1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
---
title: "Pathway activity inference from scRNA-seq"
author:
- name: Pau Badia-i-Mompel
affiliation:
- Heidelberg Universiy
output:
BiocStyle::html_document:
self_contained: true
toc: true
toc_float: true
toc_depth: 3
code_folding: show
package: "`r pkg_ver('decoupleR')`"
vignette: >
%\VignetteIndexEntry{Pathway activity activity inference from scRNA-seq}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
scRNA-seq yield many molecular readouts that are hard to interpret by
themselves. One way of summarizing this information is by inferring pathway
activities from prior knowledge.
In this notebook we showcase how to use `decoupleR` for pathway activity
inference with a down-sampled PBMCs 10X data-set. The data consists of 160
PBMCs from a Healthy Donor. The original data is freely available from 10x Genomics
[here](https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz)
from this [webpage](https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k).
# Loading packages
First, we need to load the relevant packages, `Seurat` to handle scRNA-seq data
and `decoupleR` to use statistical methods.
```{r "load packages", message = FALSE}
## We load the required packages
library(Seurat)
library(decoupleR)
# Only needed for data handling and plotting
library(dplyr)
library(tibble)
library(tidyr)
library(patchwork)
library(ggplot2)
library(pheatmap)
```
# Loading the data-set
Here we used a down-sampled version of the data used in the `Seurat`
[vignette](https://satijalab.org/seurat/articles/pbmc3k_tutorial.html).
We can open the data like this:
```{r "load data"}
inputs_dir <- system.file("extdata", package = "decoupleR")
data <- readRDS(file.path(inputs_dir, "sc_data.rds"))
```
We can observe that we have different cell types:
```{r "umap", message = FALSE, warning = FALSE}
DimPlot(data, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
```
# PROGENy model
[PROGENy](https://saezlab.github.io/progeny/) is a comprehensive resource
containing a curated collection of pathways and their target genes, with weights
for each interaction. For this example we will use the human weights
(mouse is also available) and we will use the top 100 responsive genes ranked
by p-value. We can use `decoupleR` to retrieve it from `OmniPath`:
```{r "progeny", message=FALSE}
net <- get_progeny(organism = 'human', top = 100)
net
```
# Activity inference with Weighted Mean
To infer activities we will run the Weighted Mean method (`wmean`). It infers
regulator activities by first multiplying each target feature by its associated
weight which then are summed to an enrichment score `wmean`. Furthermore,
permutations of random target features can be performed to obtain a null
distribution that can be used to compute a z-score `norm_wmean`, or a corrected
estimate `corr_wmean` by multiplying `wmean` by the minus log10 of the obtained
empirical p-value.
In this example we use `wmean` but we could have used any other.
To see what methods are available use `show_methods()`.
To run `decoupleR` methods, we need an input matrix (`mat`), an input prior
knowledge network/resource (`net`), and the name of the columns of net that we
want to use.
```{r "wmean", message=FALSE}
# Extract the normalized log-transformed counts
mat <- as.matrix(data@assays$RNA@data)
# Run wmean
acts <- run_wmean(mat=mat, net=net, .source='source', .target='target',
.mor='weight', times = 100, minsize = 5)
acts
```
# Visualization
From the obtained results, we will select the `norm_wmean` activities and store
them in our object as a new assay called `pathwayswmean`:
```{r "new_assay", message=FALSE}
# Extract norm_wmean and store it in pathwayswmean in data
data[['pathwayswmean']] <- acts %>%
filter(statistic == 'norm_wmean') %>%
pivot_wider(id_cols = 'source', names_from = 'condition',
values_from = 'score') %>%
column_to_rownames('source') %>%
Seurat::CreateAssayObject(.)
# Change assay
DefaultAssay(object = data) <- "pathwayswmean"
# Scale the data
data <- ScaleData(data)
data@assays$pathwayswmean@data <- data@assays$pathwayswmean@scale.data
```
This new assay can be used to plot activities. Here we visualize the Trail
pathway, associated with apoptosis, which seems that in B and NK cells is more
active.
```{r "projected_acts", message = FALSE, warning = FALSE, fig.width = 8, fig.height = 4}
p1 <- DimPlot(data, reduction = "umap", label = TRUE, pt.size = 0.5) +
NoLegend() + ggtitle('Cell types')
p2 <- (FeaturePlot(data, features = c("Trail")) &
scale_colour_gradient2(low = 'blue', mid = 'white', high = 'red')) +
ggtitle('Trail activity')
p1 | p2
```
# Exploration
We can also see what is the mean activity per group across pathways:
```{r "mean_acts", message = FALSE, warning = FALSE}
# Extract activities from object as a long dataframe
df <- t(as.matrix(data@assays$pathwayswmean@data)) %>%
as.data.frame() %>%
mutate(cluster = Idents(data)) %>%
pivot_longer(cols = -cluster, names_to = "source", values_to = "score") %>%
group_by(cluster, source) %>%
summarise(mean = mean(score))
# Transform to wide matrix
top_acts_mat <- df %>%
pivot_wider(id_cols = 'cluster', names_from = 'source',
values_from = 'mean') %>%
column_to_rownames('cluster') %>%
as.matrix()
# Choose color palette
palette_length = 100
my_color = colorRampPalette(c("Darkblue", "white","red"))(palette_length)
my_breaks <- c(seq(-2, 0, length.out=ceiling(palette_length/2) + 1),
seq(0.05, 2, length.out=floor(palette_length/2)))
# Plot
pheatmap(top_acts_mat, border_color = NA, color=my_color, breaks = my_breaks)
```
In this specific example, we can observe that Trail is more active in B and NK
cells.
# Session information
```{r session_info, echo=FALSE}
options(width = 120)
sessioninfo::session_info()
```
|