1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
|
### =========================================================================
### Common operations on DelayedArray objects
### -------------------------------------------------------------------------
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Binding
###
### We only support binding DelayedArray objects along the rows or the cols
### at the moment. No binding along an arbitrary dimension yet! (i.e. no
### "abind" method yet)
###
.DelayedArray_arbind <- function(...)
{
objects <- list(...)
stash_DelayedAbind(objects[[1L]], objects[-1L], along=1L)
}
.DelayedArray_acbind <- function(...)
{
objects <- list(...)
stash_DelayedAbind(objects[[1L]], objects[-1L], along=2L)
}
setMethod("arbind", "DelayedArray", .DelayedArray_arbind)
setMethod("acbind", "DelayedArray", .DelayedArray_acbind)
### Argument 'deparse.level' is ignored.
setMethod("rbind", "DelayedArray", .DelayedArray_arbind)
setMethod("cbind", "DelayedArray", .DelayedArray_acbind)
### Arguments 'use.names', 'ignore.mcols', and 'check' are ignored.
setMethod("bindROWS", "DelayedArray",
function(x, objects=list(), use.names=TRUE, ignore.mcols=FALSE, check=TRUE)
stash_DelayedAbind(x, objects, along=1L)
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### "Ops" group generics
###
### Arith members: "+", "-", "*", "/", "^", "%%", "%/%"
### Compare members: ==, !=, <=, >=, <, >
### Logic members: &, |
###
### Return TRUE if 'length(e)' is 1 or equal to 'nrow(x)', FALSE if it's a
### divisor of 'nrow(x)', and an error otherwise.
.check_Ops_vector_arg_length <- function(e, x_nrow,
e_what="the left operand",
x_what="the first dimension of the right operand",
x_what2=x_what)
{
e_len <- length(e)
if (e_len == x_nrow || e_len == 1L)
return(TRUE)
if (is(e, "DelayedArray")) {
e_what <- paste0("the length of ", e_what)
} else {
e_what <- paste0("when ", e_what, " is not a DelayedArray ",
"object (or derivative), its length")
}
if (e_len > x_nrow)
stop(wmsg(e_what, " (", e_len, ") cannot be greater ",
"than ", x_what, " (", x_nrow, ")"))
if (e_len == 0L || x_nrow %% e_len != 0L)
stop(wmsg(e_what, " (", e_len, ") must be a divisor ",
"of ", x_what2, " (", x_nrow, ")"))
FALSE
}
.normarg_Ops_vector_arg <- function(e, x_nrow,
e_what="the left operand",
x_what="the first dimension of the right operand")
{
ok <- .check_Ops_vector_arg_length(e, x_nrow, e_what=e_what, x_what=x_what)
if (!is.vector(e))
e <- as.vector(e) # Will realize 'e' if it's a DelayedArray object.
# It's important to keep the check on the length
# (and to fail) **before** this potentially
# expensive realization (e.g. if 'length(e)' is
# very big and greater than 'x_nrow').
if (!ok)
e <- rep(e, length.out=x_nrow)
e
}
### Return a DelayedArray object of the same dimensions as 'e1'.
.DelayedArray_Ops_with_right_vector <- function(.Generic, e1, e2)
{
stopifnot(is(e1, "DelayedArray"))
e2 <- .normarg_Ops_vector_arg(e2, nrow(e1),
e_what="the right operand",
x_what="the first dimension of the left operand")
if (length(e2) == 1L) {
stash_DelayedUnaryIsoOpStack(e1,
function(a) match.fun(.Generic)(a, e2))
} else {
stash_DelayedUnaryIsoOpWithArgs(e1,
.Generic, Rargs=list(e2), Ralong=1L)
}
}
### Return a DelayedArray object of the same dimensions as 'e2'.
.DelayedArray_Ops_with_left_vector <- function(.Generic, e1, e2)
{
stopifnot(is(e2, "DelayedArray"))
e1 <- .normarg_Ops_vector_arg(e1, nrow(e2),
e_what="the left operand",
x_what="the first dimension of the right operand")
if (length(e1) == 1L) {
stash_DelayedUnaryIsoOpStack(e2,
function(a) match.fun(.Generic)(e1, a))
} else {
stash_DelayedUnaryIsoOpWithArgs(e2,
.Generic, Largs=list(e1), Lalong=1L)
}
}
### 'e1' and 'e2' must be DelayedArray objects. At least one of them must
### be of length 1 (i.e. have all its dimensions equal to 1) so it can be
### coerced to an ordinary vector of length 1 with as.vector(). Note that
### this coercion triggers realization.
.DelayedArray_Ops_with_a_length_one_arg <- function(.Generic, e1, e2)
{
stopifnot(is(e1, "DelayedArray"))
stopifnot(is(e2, "DelayedArray"))
e1_len <- length(e1)
e2_len <- length(e2)
if (e1_len == 1L && e2_len == 1L) {
## The object with most dimensions "wins".
e1_ndim <- length(dim(e1))
e2_ndim <- length(dim(e2))
if (e1_ndim > e2_ndim) {
## 'e1' wins.
e2 <- as.vector(e2) # realization
} else if (e2_ndim > e1_ndim) {
## 'e2' wins.
e1 <- as.vector(e1) # realization
} else {
## 'dim(e1)' is identical to 'dim(e2)' ==> nobody wins.
}
} else if (e1_len == 1L) {
## 'e2' wins.
e1 <- as.vector(e1) # realization
} else if (e2_len == 1L) {
## 'e1' wins.
e2 <- as.vector(e2) # realization
} else {
## Should never happen.
stop(wmsg("'e1' or 'e2' must be of length 1"))
}
if (is.vector(e1)) {
## 'e2' won.
stash_DelayedUnaryIsoOpStack(e2,
function(a) match.fun(.Generic)(e1, a))
} else if (is.vector(e2)) {
## 'e1' won.
stash_DelayedUnaryIsoOpStack(e1,
function(a) match.fun(.Generic)(a, e2))
} else {
## Nobody won and we know that this happened because 'dim(e1)'
## is identical to 'dim(e2)' so 'e1' and 'e2' are conformable.
DelayedArray(new_DelayedNaryIsoOp(.Generic, e1@seed, e2@seed))
}
}
.DelayedArray_Ops <- function(.Generic, e1, e2)
{
e1_dim <- dim(e1)
e2_dim <- dim(e2)
if (identical(e1_dim, e2_dim))
return(DelayedArray(new_DelayedNaryIsoOp(.Generic, e1@seed, e2@seed)))
## If it has only 0 or 1 effective dimensions, 'e1' or 'e2' can
## be treated as a vector-like argument (of length 1 if it has 0
## effective dimensions).
e1_neffdim <- sum(e1_dim != 1L)
e2_neffdim <- sum(e2_dim != 1L)
if (e1_neffdim >= 2L && e2_neffdim >= 2L)
stop(wmsg("non-conformable array-like objects"))
if (e1_neffdim == 0L || e2_neffdim == 0L)
return(.DelayedArray_Ops_with_a_length_one_arg(.Generic, e1, e2))
if (e1_neffdim == 1L && e2_neffdim == 1L)
stop(wmsg("non-conformable array-like objects"))
## The object with most effective dimensions "wins".
if (e1_neffdim == 1L) {
## 'e2' wins
ans <- .DelayedArray_Ops_with_left_vector(.Generic, e1, e2)
} else {
## 'e1' wins
ans <- .DelayedArray_Ops_with_right_vector(.Generic, e1, e2)
}
ans
}
setMethod("Ops", c("DelayedArray", "vector"),
function(e1, e2)
.DelayedArray_Ops_with_right_vector(.Generic, e1, e2)
)
setMethod("Ops", c("vector", "DelayedArray"),
function(e1, e2)
.DelayedArray_Ops_with_left_vector(.Generic, e1, e2)
)
setMethod("Ops", c("DelayedArray", "DelayedArray"),
function(e1, e2)
.DelayedArray_Ops(.Generic, e1, e2)
)
### Support unary operators "+" and "-".
setMethod("+", c("DelayedArray", "missing"),
function(e1, e2)
stash_DelayedUnaryIsoOpStack(e1, function(a) match.fun(.Generic)(a))
)
setMethod("-", c("DelayedArray", "missing"),
function(e1, e2)
stash_DelayedUnaryIsoOpStack(e1, function(a) match.fun(.Generic)(a))
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### pmax2() and pmin2()
###
### We treat them like the binary operators of the "Ops" group generics.
###
setGeneric("pmax2", function(e1, e2) standardGeneric("pmax2"))
setGeneric("pmin2", function(e1, e2) standardGeneric("pmin2"))
### Mimicking how the "Ops" members combine the "dim", "names", and "dimnames"
### attributes of the 2 operands.
.check_and_combine_dims <- function(e1, e2)
{
dim1 <- dim(e1)
dim2 <- dim(e2)
if (is.null(dim1))
return(dim2)
if (is.null(dim2))
return(dim1)
if (!identical(dim1, dim2))
stop("non-conformable arrays")
dim1
}
.combine_names <- function(e1, e2)
{
len1 <- length(e1)
len2 <- length(e2)
names1 <- names(e1)
if (len1 > len2)
return(names1)
names2 <- names(e2)
if (len2 > len1 || is.null(names1))
return(names2)
names1
}
setMethod("pmax2", c("ANY", "ANY"),
function(e1, e2)
{
ans_dim <- .check_and_combine_dims(e1, e2)
ans <- pmax(e1, e2)
if (is.null(ans_dim)) {
names(ans) <- .combine_names(e1, e2)
} else {
ans <- set_dim(ans, ans_dim)
ans <- set_dimnames(ans, get_first_non_NULL_dimnames(list(e1, e2)))
}
ans
}
)
setMethod("pmin2", c("ANY", "ANY"),
function(e1, e2)
{
ans_dim <- .check_and_combine_dims(e1, e2)
ans <- pmin(e1, e2)
if (is.null(ans_dim)) {
names(ans) <- .combine_names(e1, e2)
} else {
ans <- set_dim(ans, ans_dim)
ans <- set_dimnames(ans, get_first_non_NULL_dimnames(list(e1, e2)))
}
ans
}
)
for (.Generic in c("pmax2", "pmin2")) {
setMethod(.Generic, c("DelayedArray", "vector"),
function(e1, e2)
.DelayedArray_Ops_with_right_vector(.Generic, e1, e2)
)
setMethod(.Generic, c("vector", "DelayedArray"),
function(e1, e2)
.DelayedArray_Ops_with_left_vector(.Generic, e1, e2)
)
setMethod(.Generic, c("DelayedArray", "DelayedArray"),
function(e1, e2)
.DelayedArray_Ops(.Generic, e1, e2)
)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Various "unary isometric" array transformations
###
### A "unary isometric" array transformation is a transformation that returns
### an array-like object with the same dimensions as the input and where each
### element is the result of applying a function to the corresponding element
### in the input.
###
### These transformations can be implemented as delayed operations.
###
### All the "unary isometric" array transformations implemented in this
### section return a DelayedArray object of the same dimensions as the
### input DelayedArray object.
###
.UNARY_ISO_OPS <- c("is.na", "is.finite", "is.infinite", "is.nan", "!",
"tolower", "toupper")
for (.Generic in .UNARY_ISO_OPS) {
setMethod(.Generic, "DelayedArray",
function(x)
stash_DelayedUnaryIsoOpStack(x, function(a) match.fun(.Generic)(a))
)
}
setReplaceMethod("type", "DelayedArray",
function(x, value)
stash_DelayedUnaryIsoOpStack(x,
function(a) `storage.mode<-`(a, value=value))
)
setMethod("lengths", "DelayedArray",
function(x, use.names=TRUE)
stash_DelayedUnaryIsoOpStack(x,
function(a) lengths(a, use.names=use.names))
)
setMethod("nchar", "DelayedArray",
function(x, type="chars", allowNA=FALSE, keepNA=NA)
stash_DelayedUnaryIsoOpStack(x,
function(a) nchar(a, type=type, allowNA=allowNA, keepNA=keepNA))
)
setMethod("Math", "DelayedArray",
function(x)
stash_DelayedUnaryIsoOpStack(x, function(a) match.fun(.Generic)(a))
)
setMethod("log", "DelayedArray",
function(x, base=exp(1))
{
if (!isSingleNumberOrNA(base))
stop(wmsg("'base' must be a single numeric"))
stash_DelayedUnaryIsoOpStack(x, function(a) log(a, base=base))
}
)
.DelayedArray_Math2 <- function(.Generic, x, digits)
{
stopifnot(is(x, "DelayedArray"))
if (!isSingleNumberOrNA(digits))
stop(wmsg("'digits' must be a single numeric"))
if (!is.integer(digits))
digits <- as.integer(digits)
stash_DelayedUnaryIsoOpStack(x,
function(a) match.fun(.Generic)(a, digits=digits))
}
### Note that round() and signif() don't use the same default for 'digits'.
setMethod("round", "DelayedArray",
function(x, digits=0) .DelayedArray_Math2("round", x, digits)
)
setMethod("signif", "DelayedArray",
function(x, digits=6) .DelayedArray_Math2("signif", x, digits)
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### More "unary isometric" array transformations: grepl(), sub(), gsub()
###
setMethod("grepl", c(x="DelayedArray"),
function(pattern, x,
ignore.case=FALSE, perl=FALSE, fixed=FALSE, useBytes=FALSE)
stash_DelayedUnaryIsoOpStack(x,
function(a) grepl(pattern, a,
ignore.case=ignore.case, perl=perl,
fixed=fixed, useBytes=useBytes))
)
setMethod("sub", c(x="DelayedArray"),
function(pattern, replacement, x,
ignore.case=FALSE, perl=FALSE, fixed=FALSE, useBytes=FALSE)
stash_DelayedUnaryIsoOpStack(x,
function(a) sub(pattern, replacement, a,
ignore.case=ignore.case, perl=perl,
fixed=fixed, useBytes=useBytes))
)
setMethod("gsub", c(x="DelayedArray"),
function(pattern, replacement, x,
ignore.case=FALSE, perl=FALSE, fixed=FALSE, useBytes=FALSE)
stash_DelayedUnaryIsoOpStack(x,
function(a) gsub(pattern, replacement, a,
ignore.case=ignore.case, perl=perl,
fixed=fixed, useBytes=useBytes))
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### anyNA()
###
### Used in unit tests!
.BLOCK_anyNA <- function(x, recursive=FALSE, grid=NULL, as.sparse=NA)
{
FUN <- function(block, init) {
## Dispatch on anyNA() method for array or SparseArraySeed.
anyNA(block) || init
}
init <- FALSE
BREAKIF <- identity
blockReduce(FUN, x, init, BREAKIF=BREAKIF, grid=grid, as.sparse=as.sparse)
}
.anyNA_DelayedArray <- function(x, recursive=FALSE) .BLOCK_anyNA(x, recursive)
setMethod("anyNA", "DelayedArray", .anyNA_DelayedArray)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### which()
###
.which_DelayedArray <- function(x, arr.ind=FALSE, useNames=TRUE)
{
if (!identical(useNames, TRUE))
warning(wmsg("'useNames' is ignored when 'x' is ",
"a DelayedArray object or derivative"))
BLOCK_which(x, arr.ind=arr.ind)
}
setMethod("which", "DelayedArray", .which_DelayedArray)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### unique() and table()
###
### We only support 1D arrays.
### Semantically equivalent to 'unique(as.array(x), ...)' which, in the 1D
### case, is also equivalent to 'unique(as.vector(x), ...)'.
### Unlike unique.array(), does not support the 'MARGIN' or 'fromLast' args.
### Return an **ordinary** 1D array.
.BLOCK_unique <- function(x, incomparables=FALSE, grid=NULL)
{
if (length(dim(x)) != 1L)
stop(wmsg("the \"unique\" method for DelayedArray objects ",
"supports 1D objects only"))
block_results <- blockApply(x, unique, incomparables=incomparables,
grid=grid)
## Combine the block results.
unique(unlist(block_results))
}
### S3/S4 combo for unique.DelayedArray
unique.DelayedArray <- function(x, incomparables=FALSE, ...)
.BLOCK_unique(x, incomparables=incomparables, ...)
setMethod("unique", "DelayedArray", .BLOCK_unique)
### table()
.BLOCK_table <- function(..., grid=NULL)
{
objects <- list(...)
if (length(objects) != 1L)
stop(wmsg("the \"table\" method for DelayedArray objects ",
"only works on a single object at the moment"))
x <- objects[[1L]]
block_tables <- blockApply(x, table, grid=grid)
## Combine the block tables.
levels <- unlist(lapply(block_tables, names))
storage.mode(levels) <- type(x)
ans_names <- as.character(unique(sort(levels)))
block_tabs <- lapply(block_tables,
function(block_table) {
block_tabs <- integer(length(ans_names))
block_tabs[match(names(block_table), ans_names)] <- block_table
block_tabs
})
tab <- as.integer(rowSums(matrix(unlist(block_tabs),
nrow=length(ans_names),
ncol=length(block_tabs))))
## 'tab' is a naked integer vector. We need to decorate it (see
## selectMethod("table", "Rle")).
ans_dimnames <- list(ans_names)
names(ans_dimnames) <- S4Vectors:::.list.names(...)
ans <- array(tab, length(tab), dimnames=ans_dimnames)
class(ans) <- "table"
ans
}
### The table() S4 generic is defined in BiocGenerics with dispatch on the
### ellipsis (...). Unfortunately specifying 'grid' when calling table()
### breaks dispatch. For example:
### a <- array(sample(100L, 20000L, replace=TRUE), c(20, 4, 250))
### A <- DelayedArray(a)
### table(A) # ok
### table(A, grid=defaultAutoGrid(A, 500))
### # Error in .BLOCK_unique(x, incomparables = incomparables, ...) :
### # unused argument (nmax = nmax)
### A workaround is to call .BLOCK_table():
### DelayedArray:::.BLOCK_table(A, grid=defaultAutoGrid(A, 500)) # ok
.table_DelayedArray <- function(...) .BLOCK_table(...)
setMethod("table", "DelayedArray", .table_DelayedArray)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### "Summary" group generic
###
### Members: max(), min(), range(), sum(), prod(), any(), all()
###
### Gotcha with how base::prod() handles NAs/NaNs:
### > prod(c(NA, NaN)) # consistent with sum()
### [1] NA
### > prod(c(NaN, NA)) # consistent with sum()
### [1] NA
### but:
### > prod(NA, NaN) # consistent with sum()
### [1] NA
### > prod(NaN, NA) # INCONSISTENT with sum()!
### [1] NaN
.collect_objects <- function(...)
{
objects <- unname(S4Vectors:::delete_NULLs(list(...)))
is_array_like <- function(x) is(x, "Array") || is.array(x)
if (!all(vapply(objects, is_array_like, logical(1))))
stop("the supplied objects must be array-like objects (or NULLs)")
objects
}
### Used in unit tests!
### An IMPORTANT RESTRICTION is that the specified grid must be compatible
### with all the objects in '...', which means that the objects in '...'
### must be conformable!
.BLOCK_Summary <- function(.Generic, x, ..., na.rm=FALSE,
grid=NULL, as.sparse=NA)
{
GENERIC <- match.fun(.Generic)
objects <- .collect_objects(x, ...)
FUN <- function(block, init) {
## We get a warning with max(), min(), and range() if 'block'
## is empty (which should happen only when 'x' itself is empty,
## in which case blockReduce() uses a single block that has the
## dimensions of 'x'), or if 'na.rm' is TRUE and 'block' contains
## only NA's or NaN's. How we handle this warning depends on
## whether 'init' is NULL (i.e. we've seen no data yet) or not:
## - if 'init' is NULL: we use tryCatch() to catch the warning
## - otherwise: we just suppress (and ignore) the warning
if (is.null(init)) {
## Dispatch on "Summary" group method for array or SparseArraySeed.
reduced_block <- tryCatch(GENERIC(block, na.rm=na.rm),
warning=identity)
if (is(reduced_block, "warning"))
return(NULL)
} else {
## Dispatch on "Summary" group method for array or SparseArraySeed.
reduced_block <- suppressWarnings(GENERIC(block, na.rm=na.rm))
}
GENERIC(reduced_block, init)
}
init <- NULL
BREAKIF <- function(init) {
if (is.null(init))
return(FALSE)
if (na.rm) {
switch(.Generic,
max= init == Inf,
min= init == -Inf,
range= all(init == c(-Inf, Inf)),
sum=, prod= is.nan(init),
any= init,
all= !init,
FALSE) # fallback (actually not needed)
} else {
switch(.Generic,
max=, min=, sum= is.na(init) && !is.nan(init),
range= is.na(init[[1L]]) && !is.nan(init[[1L]]),
prod= is.na(init), # NA or NaN
any= identical(init, TRUE), # 'init' could be NA
all= identical(init, FALSE), # 'init' could be NA
FALSE) # fallback (actually not needed)
}
}
for (x in objects)
init <- blockReduce(FUN, x, init, BREAKIF=BREAKIF,
grid=grid, as.sparse=as.sparse)
if (is.null(init))
init <- GENERIC()
init
}
.Summary_DelayedArray <- function(x, ..., na.rm=FALSE)
.BLOCK_Summary(.Generic, x, ..., na.rm=na.rm)
setMethod("Summary", "DelayedArray", .Summary_DelayedArray)
### We override the "range" method defined above via the "Summary" method
### because we want to support the 'finite' argument like S3 method
### base::range.default() does.
### An IMPORTANT RESTRICTION is that the specified grid must be compatible
### with all the objects in '...', which means that the objects in '...'
### must be conformable!
.BLOCK_range <- function(..., na.rm=FALSE, finite=FALSE,
grid=NULL, as.sparse=NA)
{
objects <- .collect_objects(...)
FUN <- function(block, init) {
## We get a warning if 'block' is empty (which should happen only
## when 'x' itself is empty, in which case blockReduce() uses a
## single block that has the dimensions of 'x'), or if 'na.rm'
## is TRUE and 'block' contains only NA's or NaN's.
## We handle this warning like in .BLOCK_Summary() above.
if (is.null(init)) {
## Dispatch on range() method for array or SparseArraySeed.
reduced_block <- tryCatch(range(block, na.rm=na.rm, finite=finite),
warning=identity)
if (is(reduced_block, "warning"))
return(NULL)
} else {
## Dispatch on range() method for array or SparseArraySeed.
reduced_block <- suppressWarnings(range(block, na.rm=na.rm,
finite=finite))
}
range(reduced_block, init)
}
init <- NULL
BREAKIF <- function(init) {
if (is.null(init))
return(FALSE)
if (na.rm) {
all(init == c(-Inf, Inf))
} else {
is.na(init[[1L]]) && !is.nan(init[[1L]])
}
}
for (object in objects)
init <- blockReduce(FUN, object, init, BREAKIF=BREAKIF,
grid=grid, as.sparse=as.sparse)
if (is.null(init))
init <- range()
init
}
### S3/S4 combo for range.DelayedArray
range.DelayedArray <- function(..., na.rm=FALSE, finite=FALSE)
.BLOCK_range(..., na.rm=na.rm, finite=finite)
### The signature of all the members of the S4 "Summary" group generic is
### 'x, ..., na.rm' (see getGeneric("range")) which means that the S4 methods
### cannot add arguments after 'na.rm'. So we add the 'finite' argument before.
setMethod("range", "DelayedArray",
function(x, ..., finite=FALSE, na.rm=FALSE)
.BLOCK_range(x, ..., na.rm=na.rm, finite=finite)
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### mean()
###
### Gotcha with how base::mean() handles NAs/NaNs:
### > mean(c(NA, NaN)) # consistent with sum()
### [1] NA
### > mean(c(NaN, NA)) # INCONSISTENT with sum()!
### [1] NaN
### Same arguments as base::mean.default().
.BLOCK_mean <- function(x, trim=0, na.rm=FALSE, grid=NULL, as.sparse=NA)
{
if (!identical(trim, 0))
stop(wmsg("mean() method for DelayedArray objects ",
"does not support the 'trim' argument yet"))
FUN <- function(block, init) {
## Dispatch on sum() method for array or SparseArraySeed.
block_sum <- sum(block, na.rm=na.rm)
block_nval <- length(block)
if (na.rm)
## Dispatch on is.na() method for array or SparseArraySeed.
block_nval <- block_nval - sum(is.na(block))
c(block_sum, block_nval) + init
}
init <- numeric(2) # sum and nval
BREAKIF <- function(init) is.na(init[[1L]]) # NA or NaN
ans <- blockReduce(FUN, x, init, BREAKIF=BREAKIF,
grid=grid, as.sparse=as.sparse)
ans[[1L]] / ans[[2L]]
}
### S3/S4 combo for mean.DelayedArray
mean.DelayedArray <- function(x, trim=0, na.rm=FALSE, ...)
.BLOCK_mean(x, trim=trim, na.rm=na.rm, ...)
setMethod("mean", "DelayedArray", .BLOCK_mean)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### apply()
###
setGeneric("apply", signature="X")
.simplify_apply_answer <- function(ans)
{
if (!all(vapply(ans, is.atomic, logical(1), USE.NAMES=FALSE)))
return(ans) # won't simplify
ans_lens <- lengths(ans, use.names=FALSE)
mat_nrow <- ans_lens[[1L]]
if (!all(ans_lens == mat_nrow))
return(ans) # won't simplify
mat_data <- unlist(unname(ans))
if (mat_nrow == 0L)
return(mat_data) # zero-length atomic vector
mat_colnames <- names(ans)
if (mat_nrow == 1L)
return(setNames(mat_data, mat_colnames)) # atomic vector parallel
# to 'ans'
## Simplify as matrix.
mat_data_names <- names(mat_data) # comes from the 'ans' inner names
if (is.null(mat_data_names)) {
mat_rownames <- NULL
} else {
mat_rownames <- head(mat_data_names, n=mat_nrow)
if (!all(mat_data_names == mat_rownames))
mat_rownames <- NULL
}
if (is.null(mat_rownames) && is.null(mat_colnames)) {
mat_dimnames <- NULL
} else {
mat_dimnames <- list(mat_rownames, mat_colnames)
}
matrix(mat_data, ncol=length(ans), dimnames=mat_dimnames)
}
### MARGIN must be a single integer.
.apply_DelayedArray <- function(X, MARGIN, FUN, ...)
{
FUN <- match.fun(FUN)
X_dim <- dim(X)
if (!isSingleNumber(MARGIN))
stop("'MARGIN' must be a single integer")
if (!is.integer(MARGIN))
MARGIN <- as.integer(MARGIN)
if (MARGIN < 1L || MARGIN > length(X_dim))
stop("'MARGIN' must be >= 1 and <= length(dim(X))")
if (X_dim[[MARGIN]] == 0L) {
## base::apply seems to be doing something like that!
ans <- FUN(X, ...)
return(as.vector(ans[0L]))
}
## TODO: Try using sapply() instead of lapply(). Maybe we're lucky
## and it achieves the kind of simplification that we're doing with
## .simplify_apply_answer() so we can get rid of .simplify_apply_answer().
ans_names <- dimnames(X)[[MARGIN]]
ans <- lapply(setNames(seq_len(X_dim[[MARGIN]]), ans_names),
function(i) {
Nindex <- vector("list", length=length(X_dim))
Nindex[[MARGIN]] <- i
slice <- subset_by_Nindex(X, Nindex, drop=FALSE)
slice <- set_dim(slice, dim(slice)[-MARGIN])
FUN(slice, ...)
})
## Try to simplify the answer.
.simplify_apply_answer(ans)
}
setMethod("apply", "DelayedArray", .apply_DelayedArray)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### sweep()
###
setGeneric("sweep", signature="x")
### Only supports a MARGIN of length 1 for now.
### Ignores 'check.margin'.
### Works if 'FUN' is a member of the Ops group or, more generally, if 'FUN'
### works on a DelayedArray object and preserves its dimensions (e.g. pmax2()
### or pmin2() above).
setMethod("sweep", "DelayedArray",
function(x, MARGIN, STATS, FUN="-", check.margin=TRUE, ...)
{
FUN <- match.fun(FUN)
if (!identical(check.margin, TRUE))
warning(wmsg("'check.margin' is ignored when 'x' is ",
"a DelayedArray object or derivative"))
x_dim <- dim(x)
x_ndim <- length(x_dim)
if (!isSingleNumber(MARGIN))
stop(wmsg("the \"sweep\" method for DelayedArray objects ",
"only supports a MARGIN of length 1 at the moment"))
if (!is.integer(MARGIN))
MARGIN <- as.integer(MARGIN)
if (MARGIN < 1 || MARGIN > x_ndim)
stop("invalid 'MARGIN'")
## Check 'STATS' length.
## If 'FUN' is a member of the Ops group, it will check the length
## of 'STATS' and possibly reject it but it will display an obscure
## error message (see .normarg_Ops_vector_arg() in this file). By
## checking the length early, we can display a more appropriate
## error message.
.check_Ops_vector_arg_length(STATS, x_dim[[MARGIN]],
e_what="'STATS'",
x_what="the extent of 'dim(x)[MARGIN]'",
x_what2="'dim(x)[MARGIN]'")
perm <- c(MARGIN, seq_len(x_ndim)[-MARGIN])
x2 <- aperm(x, perm)
ans2 <- FUN(x2, STATS, ...)
aperm(ans2, order(perm))
}
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### scale()
###
setGeneric("scale", signature="x")
### S3/S4 combo for scale.DelayedMatrix
scale.DelayedMatrix <- function(x, center=TRUE, scale=TRUE)
{
tx <- t(x)
if (!isFALSE(center)) {
if (isTRUE(center)) {
center <- colMeans(x, na.rm=TRUE)
} else if (!is.numeric(center)) {
stop(wmsg("'center' must be TRUE or FALSE or a numeric vector"))
}
tx <- tx - center
}
if (!isFALSE(scale)) {
if (isTRUE(scale)) {
scale <- rowSds(tx, center=0, na.rm=TRUE)
## Work around a bug in some DelayedMatrixStats methods (e.g.
## row/colVars() and row/colSds()) where the method is not
## propagating the row/colnames of the supplied DelayedMatrix
## object in some situations e.g. when the object carries a
## delayed transposition.
if (is.null(names(scale)))
names(scale) <- rownames(tx)
} else if (!is.numeric(scale)) {
stop(wmsg("'center' must be TRUE or FALSE or a numeric vector"))
}
tx <- tx / scale
}
ans <- t(tx)
if (is.numeric(center))
attr(ans, "scaled:center") <- center
if (is.numeric(scale))
attr(ans, "scaled:scale") <- scale
ans
}
setMethod("scale", "DelayedMatrix", scale.DelayedMatrix)
|