1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
### =========================================================================
### Common operations on DelayedMatrix objects
### -------------------------------------------------------------------------
###
.read_matrix_block <- function(...) {
block <- read_block(..., as.sparse=NA)
if (is(block, "SparseArraySeed"))
block <- as(block, "CsparseMatrix") # to dgCMatrix or lgCMatrix
block
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### rowsum() / colsum()
###
.compute_rowsum_for_block <- function(x, grid, i, j, group, na.rm=FALSE)
{
viewport <- grid[[i, j]]
block <- .read_matrix_block(x, viewport)
group2 <- extractROWS(group, ranges(viewport)[1L])
rowsum(block, group2, reorder=FALSE, na.rm=na.rm)
}
.compute_colsum_for_block <- function(x, grid, i, j, group, na.rm=FALSE)
{
viewport <- grid[[i, j]]
block <- .read_matrix_block(x, viewport)
group2 <- extractROWS(group, ranges(viewport)[2L])
colsum(block, group2, reorder=FALSE, na.rm=na.rm)
}
.compute_rowsum_for_grid_col <- function(x, grid, j, group, ugroup,
na.rm=FALSE, verbose=FALSE)
{
grid_nrow <- nrow(grid)
grid_ncol <- ncol(grid)
ans <- matrix(0L, nrow=length(ugroup), ncol=ncol(grid[[1L, j]]))
## Inner loop on the grid rows. Sequential.
for (i in seq_len(grid_nrow)) {
if (verbose)
message("Processing block [[", i, "/", grid_nrow, ", ",
j, "/", grid_ncol, "]] ... ",
appendLF=FALSE)
block_ans <- .compute_rowsum_for_block(x, grid, i, j,
group, na.rm=na.rm)
m <- match(rownames(block_ans), ugroup)
ans[m, ] <- ans[m, ] + block_ans
if (verbose)
message("OK")
}
ans
}
.compute_colsum_for_grid_row <- function(x, grid, i, group, ugroup,
na.rm=FALSE, verbose=FALSE)
{
grid_nrow <- nrow(grid)
grid_ncol <- ncol(grid)
ans <- matrix(0L, nrow=nrow(grid[[i, 1L]]), ncol=length(ugroup))
## Inner loop on the grid cols. Sequential.
for (j in seq_len(grid_ncol)) {
if (verbose)
message("Processing block [[", i, "/", grid_nrow, ", ",
j, "/", grid_ncol, "]] ... ",
appendLF=FALSE)
block_ans <- .compute_colsum_for_block(x, grid, i, j,
group, na.rm=na.rm)
m <- match(colnames(block_ans), ugroup)
ans[ , m] <- ans[ , m] + block_ans
if (verbose)
message("OK")
}
ans
}
.BLOCK_rowsum <- function(x, group, reorder=TRUE, na.rm=FALSE, grid=NULL)
{
ugroup <- as.character(compute_ugroup(group, nrow(x), reorder))
if (!isTRUEorFALSE(na.rm))
stop(wmsg("'na.rm' must be TRUE or FALSE"))
grid <- normarg_grid(grid, x)
## Outer loop on the grid columns. Parallelized.
block_results <- bplapply2(seq_len(ncol(grid)),
function(j) {
.compute_rowsum_for_grid_col(x, grid, j, group, ugroup,
na.rm=na.rm,
verbose=get_verbose_block_processing())
},
BPPARAM=getAutoBPPARAM()
)
ans <- do.call(cbind, block_results)
dimnames(ans) <- list(ugroup, colnames(x))
ans
}
.BLOCK_colsum <- function(x, group, reorder=TRUE, na.rm=FALSE, grid=NULL)
{
ugroup <- as.character(compute_ugroup(group, ncol(x), reorder))
if (!isTRUEorFALSE(na.rm))
stop(wmsg("'na.rm' must be TRUE or FALSE"))
grid <- normarg_grid(grid, x)
## Outer loop on the grid rows. Parallelized.
block_results <- bplapply2(seq_len(nrow(grid)),
function(i) {
.compute_colsum_for_grid_row(x, grid, i, group, ugroup,
na.rm=na.rm,
verbose=get_verbose_block_processing())
},
BPPARAM=getAutoBPPARAM()
)
ans <- do.call(rbind, block_results)
dimnames(ans) <- list(rownames(x), ugroup)
ans
}
### S3/S4 combo for rowsum.DelayedMatrix
rowsum.DelayedMatrix <- function(x, group, reorder=TRUE, ...)
.BLOCK_rowsum(x, group, reorder=reorder, ...)
setMethod("rowsum", "DelayedMatrix", .BLOCK_rowsum)
setMethod("colsum", "DelayedMatrix", .BLOCK_colsum)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Matrix multiplication
###
### We only support multiplication of an ordinary matrix (typically
### small) by a DelayedMatrix object (typically big). Multiplication of 2
### DelayedMatrix objects is not supported.
###
.BLOCK_mult_by_left_matrix <- function(x, y)
{
stopifnot(is.matrix(x),
is(y, "DelayedMatrix") || is.matrix(y),
ncol(x) == nrow(y))
ans_dim <- c(nrow(x), ncol(y))
ans_dimnames <- simplify_NULL_dimnames(list(rownames(x), colnames(y)))
ans_type <- typeof(vector(type(x), 1L) * vector(type(y), 1L))
sink <- AutoRealizationSink(ans_dim, ans_dimnames, ans_type)
on.exit(close(sink))
y_grid <- colAutoGrid(y)
ans_spacings <- c(ans_dim[[1L]], ncol(y_grid[[1L]]))
ans_grid <- RegularArrayGrid(ans_dim, ans_spacings) # parallel to 'y_grid'
nblock <- length(y_grid) # same as 'length(ans_grid)'
for (bid in seq_len(nblock)) {
if (get_verbose_block_processing())
message("Processing block ", bid, "/", nblock, " ... ",
appendLF=FALSE)
y_viewport <- y_grid[[bid]]
block <- .read_matrix_block(y, y_viewport)
block_ans <- x %*% block
write_block(sink, ans_grid[[bid]], block_ans)
if (get_verbose_block_processing())
message("OK")
}
as(sink, "DelayedArray")
}
setMethod("%*%", c("ANY", "DelayedMatrix"),
function(x, y)
{
if (!is.matrix(x)) {
if (!is.vector(x))
stop(wmsg("matrix multiplication of a ", class(x), " object ",
"by a ", class(y), " object is not supported"))
x_len <- length(x)
y_nrow <- nrow(y)
if (x_len != 0L && x_len != y_nrow)
stop(wmsg("non-conformable arguments"))
x <- matrix(x, ncol=y_nrow)
}
.BLOCK_mult_by_left_matrix(x, y)
}
)
setMethod("%*%", c("DelayedMatrix", "ANY"),
function(x, y)
{
if (!is.matrix(y)) {
if (!is.vector(y))
stop(wmsg("matrix multiplication of a ", class(x), " object ",
"by a ", class(y), " object is not supported"))
y_len <- length(y)
x_ncol <- ncol(x)
if (y_len != 0L && y_len != x_ncol)
stop(wmsg("non-conformable arguments"))
y <- matrix(y, nrow=x_ncol)
}
t(t(y) %*% t(x))
}
)
.BLOCK_matrix_mult <- function(x, y)
{
stop(wmsg("Matrix multiplication of 2 DelayedMatrix derivatives is not ",
"supported at the moment. Only matrix multiplication between ",
"a DelayedMatrix derivative and an ordinary matrix or vector ",
"is supported for now."))
x_dim <- dim(x)
y_dim <- dim(y)
stopifnot(length(x_dim) == 2L, length(y_dim) == 2L, ncol(x) == nrow(y))
ans_dim <- c(nrow(x), ncol(y))
ans_dimnames <- simplify_NULL_dimnames(list(rownames(x), colnames(y)))
ans_type <- typeof(vector(type(x), 1L) * vector(type(y), 1L))
sink <- AutoRealizationSink(ans_dim, ans_dimnames, ans_type)
on.exit(close(sink))
}
setMethod("%*%", c("DelayedMatrix", "DelayedMatrix"), .BLOCK_matrix_mult)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Parallelized schemes for matrix multiplication.
###
### by Aaron Lun
###
### This splits one or both matrices into blocks according to the
### desired parallelization scheme, and distributes them to workers.
### This also requires care to respect the maximum block size.
###
.grid_by_dimension <- function(x, nworkers)
# Splits a dimension of the matrix into at least 'nworkers' blocks.
# If the block size is too large, it is reduced to obtain the desired
# number of blocks in order for parallelization to be effective.
{
old <- getAutoBlockLength(type(x))
ideal_size_by_row <- max(1, ceiling(nrow(x)/nworkers) * ncol(x))
if (old > ideal_size_by_row) {
row_grid <- rowAutoGrid(x, block.length=ideal_size_by_row)
} else {
row_grid <- rowAutoGrid(x)
}
ideal_size_by_col <- max(1, ceiling(ncol(x)/nworkers) * nrow(x))
if (old > ideal_size_by_col) {
col_grid <- colAutoGrid(x, block.length=ideal_size_by_col)
} else {
col_grid <- colAutoGrid(x)
}
list(row=row_grid, col=col_grid)
}
.left_mult <- function(bid, grid, x, y, MULT) {
# this, and all other calls, had better yield a non-DA, otherwise MULT will recurse endlessly.
block <- .read_matrix_block(x, grid[[bid]])
MULT(block, y)
}
.right_mult <- function(bid, grid, x, y, MULT) {
block <- .read_matrix_block(y, grid[[bid]])
MULT(x, block)
}
.super_BLOCK_mult <- function(x, y, MULT, transposed.x=FALSE, transposed.y=FALSE, BPPARAM=getAutoBPPARAM())
# Controller function that split jobs for a multiplication function "MULT".
# This accommodates %*%, crossprod and tcrossprod for two arguments.
{
if (is.null(BPPARAM)) {
nworkers <- 1L
} else {
nworkers <- BiocParallel::bpnworkers(BPPARAM)
}
# Choosing the right dimension to iterate over, depending on MULT.
x_grid <- .grid_by_dimension(x, nworkers)
if (transposed.x) {
x_grid <- x_grid$col
} else {
x_grid <- x_grid$row
}
y_grid <- .grid_by_dimension(y, nworkers)
if (transposed.y) {
y_grid <- y_grid$row
} else {
y_grid <- y_grid$col
}
# Always iterating over the 'larger' matrix, to better split up the work.
# In the context of file-backed matrices, this operates under the heuristic
# that the larger matrix is the file-backed one.
if (length(x) > length(y)) {
chosen_scheme <- "x"
} else {
chosen_scheme <- "y"
}
# Switch to iteration over the other argument if the chosen one is
# single-block and non-DA (at which point you might as well iterate
# over the other argument anyway). This avoids infinite recursion
# when 'x' or 'y' fail to get realized via read_block().
if (chosen_scheme=="x" && length(x_grid)==1L && !is(x, "DelayedMatrix")) {
chosen_scheme <- "y"
} else if (chosen_scheme=="y" && length(y_grid)==1L && !is(y, "DelayedMatrix")) {
chosen_scheme <- "x"
}
old <- getAutoBPPARAM()
on.exit(setAutoBPPARAM(old))
setAutoBPPARAM(NULL) # Avoid re-parallelizing in further calls to 'MULT'.
if (chosen_scheme=="x") {
out <- bplapply2(seq_len(length(x_grid)),
FUN=.left_mult,
x=x, y=y, grid=x_grid,
MULT=MULT,
BPPARAM=BPPARAM)
ans <- do.call(rbind, out)
} else if (chosen_scheme=="y") {
out <- bplapply2(seq_len(length(y_grid)),
FUN=.right_mult,
x=x, y=y, grid=y_grid,
MULT=MULT,
BPPARAM=BPPARAM)
ans <- do.call(cbind, out)
}
realize(ans)
}
setMethod("%*%", c("DelayedMatrix", "ANY"), function(x, y) {
if (is.null(dim(y))) y <- cbind(y)
.super_BLOCK_mult(x, y, MULT=`%*%`)
})
setMethod("%*%", c("ANY", "DelayedMatrix"), function(x, y) {
if (is.null(dim(x))) x <- rbind(x)
.super_BLOCK_mult(x, y, MULT=`%*%`)
})
setMethod("%*%", c("DelayedMatrix", "DelayedMatrix"), function(x, y) .super_BLOCK_mult(x, y, MULT=`%*%`))
setMethod("crossprod", c("DelayedMatrix", "ANY"), function(x, y) {
if (is.null(dim(y))) y <- cbind(y)
.super_BLOCK_mult(x, y, MULT=crossprod, transposed.x=TRUE)
})
setMethod("crossprod", c("ANY", "DelayedMatrix"), function(x, y) {
if (is.null(dim(x))) x <- rbind(x)
.super_BLOCK_mult(x, y, MULT=crossprod, transposed.x=TRUE)
})
setMethod("crossprod", c("DelayedMatrix", "DelayedMatrix"), function(x, y)
.super_BLOCK_mult(x, y, MULT=crossprod, transposed.x=TRUE)
)
# tcrossprod with vector 'y' doesn't work in base, and so it won't work here either.
setMethod("tcrossprod", c("DelayedMatrix", "ANY"), function(x, y)
.super_BLOCK_mult(x, y, MULT=tcrossprod, transposed.y=TRUE)
)
setMethod("tcrossprod", c("ANY", "DelayedMatrix"), function(x, y) {
if (is.null(dim(x))) x <- rbind(x)
.super_BLOCK_mult(x, y, MULT=tcrossprod, transposed.y=TRUE)
})
setMethod("tcrossprod", c("DelayedMatrix", "DelayedMatrix"), function(x, y)
.super_BLOCK_mult(x, y, MULT=tcrossprod, transposed.y=TRUE)
)
.solo_mult <- function(bid, grid, x, MULT) {
block <- read_block(x, grid[[bid]])
MULT(block)
}
.super_BLOCK_self <- function(x, MULT, transposed=FALSE, BPPARAM=getAutoBPPARAM())
# Controller function that split jobs for a multiplication function "MULT".
# This accommodates crossprod and tcrossprod for single arguments.
{
if (is.null(BPPARAM)) {
nworkers <- 1L
} else {
nworkers <- BiocParallel::bpnworkers(BPPARAM)
}
# Choosing the right dimension to iterate over, depending on MULT.
grid <- .grid_by_dimension(x, nworkers)
if (transposed) {
fast <- grid$col
slow <- grid$row
} else {
fast <- grid$row
slow <- grid$col
}
old <- getAutoBPPARAM()
on.exit(setAutoBPPARAM(old))
setAutoBPPARAM(NULL) # Avoid re-parallelizing in further calls to 'MULT'.
if (getAutoMultParallelAgnostic()) {
out <- bplapply2(seq_len(length(slow)),
FUN=.left_mult,
x=x, y=x, grid=slow,
MULT=MULT,
BPPARAM=BPPARAM)
ans <- do.call(rbind, out)
} else {
ans <- bplapply2(seq_len(length(fast)),
FUN=.solo_mult,
x=x, grid=fast,
MULT=MULT,
BPPARAM=BPPARAM)
ans <- Reduce("+", ans)
}
realize(ans)
}
setMethod("crossprod", c("DelayedMatrix", "missing"), function(x, y)
.super_BLOCK_self(x, MULT=crossprod)
)
setMethod("tcrossprod", c("DelayedMatrix", "missing"), function(x, y)
.super_BLOCK_self(x, MULT=tcrossprod, transposed=TRUE)
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### User-visible global settings for parallelized matrix multiplication.
###
### by Aaron Lun
###
### This allows the user to specify whether or not they want to guarantee
### the identical matrix products regardless of the number of workers.
### This is because splitting by the common dimension does not preserve the
### order of addition operations, which changes the output due to numerical
### imprecision in the inner products of each vector.
###
setAutoMultParallelAgnostic <- function(agnostic=TRUE) {
set_user_option("auto.mult.parallel.agnostic", agnostic)
}
getAutoMultParallelAgnostic <- function() {
get_user_option("auto.mult.parallel.agnostic")
}
|