File: DelayedUnaryIsoOpStack-class.R

package info (click to toggle)
r-bioc-delayedarray 0.24.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,480 kB
  • sloc: ansic: 727; makefile: 2
file content (174 lines) | stat: -rw-r--r-- 6,047 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
### =========================================================================
### DelayedUnaryIsoOpStack objects
### -------------------------------------------------------------------------
###
### Representation of delayed unary isometric operations stacked (a.k.a.
### piped) together.
### That is:
###
###     out <- a |> OP1 |> OP2 |> ... |> OPk
###
### where:
###   - OP1, OP2, ..., OPk are isometric array transformations i.e.
###     operations that return an array with the same dimensions as
###     the input array,
###   - 'a' is the input array,
###   - the output ('out') is an array of same dimensions as 'a'.
###
### In addition, each operation in the pipe must satisfy the property that
### each value in the output array must be determined **solely** by the
### corresponding value in the input array. In other words:
###
###     OP(a)[i_1, i_2, ..., i_n]
###
### must be equal to:
###
###     OP(a[i_1, i_2, ..., i_n])
###
### for any valid multidimensional index (i_1, i_2, ..., i_n).
###
### We refer to this property as the "locality principle".
###
### Concrete examples:
###
### 1. Things like is.na(), is.finite(), logical negation (!), nchar(),
###    tolower().
###
### 2. Most functions in the Math and Math2 groups e.g. log(), sqrt(), abs(),
###    ceiling(), round(), etc...
###    Notable exceptions are the cum*() functions (cummin(), cummax(),
###    cumsum(), and cumprod()): they don't satisfy the "locality principle".
###
### 3. Operations in the Ops group when one operand is an array and the
###    other a scalar e.g. 'a + 10', '2 ^ a', 'a <= 1', etc...
###

setClass("DelayedUnaryIsoOpStack",
    contains="DelayedUnaryIsoOp",
    representation(
        OPS="list"  # The functions to apply to the input i.e. to the
                    # incoming array-like object. For example log
                    # or function(x) log(x + 1). It should act as an
                    # isomorphism i.e. always output an array-like
                    # object **parallel** to the input (i.e. with the
                    # same dimensions as the input).
    ),
    prototype(
        OPS=list()
    )
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Constructor
###

new_DelayedUnaryIsoOpStack <- function(seed=new("array"), OPS=list(),
                                       check.op=FALSE)
{
    seed_dim <- dim(seed)
    if (length(seed_dim) == 0L)
        stop(wmsg("'seed' must have dimensions"))

    if (!is.list(OPS))
        stop(wmsg("'OPS' must be a list"))
    OPS <- lapply(OPS, match.fun)

    ans <- new2("DelayedUnaryIsoOpStack", seed=seed, OPS=OPS)
    if (check.op) {
        ## We quickly test the validity of the operation by calling type()
        ## on the returned object. This will fail if the operation cannot
        ## be applied e.g. if the user does something like:
        ##   M <- DelayedArray(matrix(character(12), ncol=3))
        ##   M2 <- log(M)
        ## The test is cheap and type() will be called anyway by show()
        ## later when the user tries to display M2. Better fail early than
        ## late!
        type(ans)  # we ignore the returned value
    }
    ans
}


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Display
###

### S3/S4 combo for summary.DelayedUnaryIsoOpStack

.DelayedUnaryIsoOpStack_summary <- function(object)
{
    sprintf("Stack of %d unary iso op(s)", length(object@OPS))
}

summary.DelayedUnaryIsoOpStack <-
    function(object, ...) .DelayedUnaryIsoOpStack_summary(object, ...)

setMethod("summary", "DelayedUnaryIsoOpStack", summary.DelayedUnaryIsoOpStack)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Seed contract
###
### We inherit the default dim() and dimnames() methods defined for
### DelayedUnaryIsoOp derivatives, but overwite their extract_array() method.

setMethod("extract_array", "DelayedUnaryIsoOpStack",
    function(x, index)
    {
        a <- extract_array(x@seed, index)
        a_dim <- dim(a)
        for (OP in x@OPS) {
            a <- OP(a)
            ## Some operations (e.g. dnorm()) don't propagate the "dim"
            ## attribute if the input array is empty.
            a <- set_or_check_dim(a, a_dim)
        }
        a
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Propagation of sparsity
###

setMethod("is_sparse", "DelayedUnaryIsoOpStack",
    function(x)
    {
        if (!is_sparse(x@seed))
            return(FALSE)
        ## Structural sparsity will be propagated if the operations in
        ## x@OPS preserve the zeros. To find out whether zeros are preserved
        ## or not, we replace the current seed with an array of one "zero",
        ## that is, with an ordinary array of the same number of dimensions
        ## and type as the seed, but with a single "zero" element. Then we
        ## apply the operations in x@OPS to it and see whether the zero was
        ## preserved or not.
        seed_ndim <- length(dim(x@seed))
        x@seed <- make_one_zero_array(type(x@seed), seed_ndim)
        ## Same as 'as.array(x)' but doesn't try to propagate the dimnames.
        a0 <- extract_array(x, vector("list", length=seed_ndim))
        is_filled_with_zeros(a0)
    }
)

### 'is_sparse(x)' is assumed to be TRUE and 'index' is assumed to
### not contain duplicates. See "extract_sparse_array() Terms of Use"
### in SparseArraySeed-class.R
setMethod("extract_sparse_array", "DelayedUnaryIsoOpStack",
    function(x, index)
    {
        ## Assuming that the caller respected "extract_sparse_array() Terms
        ## of Use" (see SparseArraySeed-class.R), 'is_sparse(x)' should be
        ## TRUE so we can assume that the operations in x@OPS preserve the
        ## zeros and thus only need to apply them to the nonzero data.
        sas <- extract_sparse_array(x@seed, index)
        sas_nzdata <- sas@nzdata
        for (OP in x@OPS)
            sas_nzdata <- OP(sas_nzdata)
        sas@nzdata <- sas_nzdata
        sas
    }
)