File: SparseArraySeed-utils.R

package info (click to toggle)
r-bioc-delayedarray 0.24.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,480 kB
  • sloc: ansic: 727; makefile: 2
file content (221 lines) | stat: -rw-r--r-- 7,401 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
### =========================================================================
### Operate natively on SparseArraySeed objects
### -------------------------------------------------------------------------


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Binding
###

### Similar to simple_abind() (see bind-arrays.R) but works on
### SparseArraySeed objects.
abind_SparseArraySeed_objects <- function(objects, along)
{
    stopifnot(is.list(objects))
    if (length(objects) == 0L)
        return(NULL)

    ## Check dim compatibility.
    dims <- get_dims_to_bind(objects, along)
    if (is.character(dims))
        stop(wmsg(dims))
    if (length(objects) == 1L)
        return(objects[[1L]])

    ## Compute 'ans_dim' and 'ans_dimnames'.
    ans_dim <- combine_dims_along(dims, along)
    ans_dimnames <- combine_dimnames_along(objects, dims, along)

    ## Combine the "nzindex" slots.
    offsets <- cumsum(dims[along, -ncol(dims)])
    nzindex_list <- lapply(seq_along(objects),
        function(i) {
            object <- objects[[i]]
            nzindex <- object@nzindex
            if (i >= 2L)
                nzindex[ , along] = nzindex[ , along, drop=FALSE] +
                                    offsets[[i - 1L]]
            nzindex
	}
    )
    ans_nzindex <- do.call(rbind, nzindex_list)

    ## Combine the "nzdata" slots.
    ans_nzdata <- unlist(lapply(objects, slot, "nzdata"), use.names=FALSE)

    SparseArraySeed(ans_dim, ans_nzindex, ans_nzdata, ans_dimnames, check=FALSE)
}

setMethod("rbind", "SparseArraySeed",
    function(...)
    {
        abind_SparseArraySeed_objects(list(...), along=1L)
    }
)

setMethod("cbind", "SparseArraySeed",
    function(...)
    {
        abind_SparseArraySeed_objects(list(...), along=2L)
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Various "unary isometric" array transformations
###
### A "unary isometric" array transformation is a transformation that returns
### an array-like object with the same dimensions as the input and where each
### element is the result of applying a function to the corresponding element
### in the input.
###
### Note that some "unary isometric" transformations preserve sparsity (e.g.
### is.na(), nchar(), round(), sqrt(), log1p(), etc...) and others don't
### (e.g. is.finite(), !, log(), etc..). We only implement the former.
###
### All the "unary isometric" array transformations implemented in this
### section return a SparseArraySeed object of the same dimensions as the
### input SparseArraySeed object.
###

.UNARY_ISO_OPS <- c("is.na", "is.infinite", "is.nan", "tolower", "toupper")

for (.Generic in .UNARY_ISO_OPS) {
    setMethod(.Generic, "SparseArraySeed",
        function(x)
        {
            GENERIC <- match.fun(.Generic)
            new_nzdata <- GENERIC(x@nzdata)
            BiocGenerics:::replaceSlots(x, nzdata=new_nzdata, check=FALSE)
        }
    )
}

setMethod("nchar", "SparseArraySeed",
    function(x, type="chars", allowNA=FALSE, keepNA=NA)
    {
        new_nzdata <- nchar(x@nzdata, type=type, allowNA=allowNA, keepNA=keepNA)
        BiocGenerics:::replaceSlots(x, nzdata=new_nzdata, check=FALSE)
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### anyNA()
###

setMethod("anyNA", "SparseArraySeed",
    function(x, recursive=FALSE) anyNA(x@nzdata, recursive=recursive)
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### which()
###

.nzindex_order <- function(nzindex)
    do.call(order, lapply(ncol(nzindex):1L, function(along) nzindex[ , along]))

setMethod("which", "SparseArraySeed",
    function(x, arr.ind=FALSE, useNames=TRUE)
    {
        if (!identical(useNames, TRUE))
            warning(wmsg("'useNames' is ignored when 'x' is ",
                         "a SparseArraySeed object or derivative"))
        if (!isTRUEorFALSE(arr.ind))
            stop(wmsg("'arr.ind' must be TRUE or FALSE"))
        idx1 <- which(x@nzdata)
        nzindex1 <- x@nzindex[idx1, , drop=FALSE]
        oo <- .nzindex_order(nzindex1)
        ans <- nzindex1[oo, , drop=FALSE]
        if (arr.ind)
            return(ans)
        Mindex2Lindex(ans, dim=dim(x))
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### "Summary" group generic
###
### Members: max(), min(), range(), sum(), prod(), any(), all()
###

setMethod("Summary", "SparseArraySeed",
    function(x, ..., na.rm=FALSE)
    {
        GENERIC <- match.fun(.Generic)
        if (length(list(...)) != 0L)
            stop(wmsg(.Generic, "() method for SparseArraySeed objects ",
                      "only accepts a single object"))
        ## Whether 'x' contains zeros or not doesn't make a difference for
        ## sum() and any().
        if (.Generic %in% c("sum", "any"))
            return(GENERIC(x@nzdata, na.rm=na.rm))
        ## Of course a typical SparseArraySeed object "contains" zeros
        ## (i.e. it would contain zeros if we converted it to a dense
        ## representation with sparse2dense()). However, this is not
        ## guaranteed so we need to make sure to properly handle the case
        ## where it doesn't (admittedly unusual and definitely an inefficient
        ## way to represent dense data!)
        x_has_zeros <- length(x@nzdata) < length(x)
        if (!x_has_zeros)
            return(GENERIC(x@nzdata, na.rm=na.rm))
        x_type <- typeof(x@nzdata)
        if (.Generic == "all") {
            ## Mimic what 'all(sparse2dense(x))' would do.
            if (x_type == "double")
                warning("coercing argument of type 'double' to logical")
            return(FALSE)
        }
        zero <- vector(x_type, length=1L)
        GENERIC(zero, x@nzdata, na.rm=na.rm)
    }
)

### We override the "range" method defined above via the "Summary" method
### because we want to support the 'finite' argument like S3 method
### base::range.default() does.

### S3/S4 combo for range.SparseArraySeed
range.SparseArraySeed <- function(..., na.rm=FALSE, finite=FALSE)
{
    objects <- list(...)
    if (length(objects) != 1L)
        stop(wmsg("range() method for SparseArraySeed objects ",
                  "only accepts a single object"))
    x <- objects[[1L]]
    x_has_zeros <- length(x@nzdata) < length(x)
    if (!x_has_zeros)
        return(range(x@nzdata, na.rm=na.rm, finite=finite))
    zero <- vector(typeof(x@nzdata), length=1L)
    range(zero, x@nzdata, na.rm=na.rm, finite=finite)
}
### The signature of all the members of the S4 "Summary" group generic is
### 'x, ..., na.rm' (see getGeneric("range")) which means that the S4 methods
### cannot add arguments after 'na.rm'. So we add the 'finite' argument before.
setMethod("range", "SparseArraySeed",
    function(x, ..., finite=FALSE, na.rm=FALSE)
        range.SparseArraySeed(x, ..., na.rm=na.rm, finite=finite)

)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### mean()
###

.mean_SparseArraySeed <- function(x, na.rm=FALSE)
{
    s <- sum(x@nzdata, na.rm=na.rm)
    nval <- length(x)
    if (na.rm)
        nval <- nval - sum(is.na(x@nzdata))
    s / nval
}

### S3/S4 combo for mean.SparseArraySeed
mean.SparseArraySeed <- function(x, na.rm=FALSE, ...)
    .mean_SparseArraySeed(x, na.rm=na.rm, ...)
setMethod("mean", "SparseArraySeed", .mean_SparseArraySeed)