1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
### =========================================================================
### extract_array()
### -------------------------------------------------------------------------
###
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Low-level helpers
###
### Return the slice as a list.
.extract_data_frame_slice <- function(x, index)
{
slice <- subset_by_Nindex(x, index)
## Turn into a list and replace factors with character vectors.
lapply(slice, as.vector)
}
.extract_DataFrame_slice <- function(x, index)
{
slice <- subset_by_Nindex(x, index)
slice <- as.data.frame(slice)
## Turn into a list and replace factors with character vectors.
lapply(slice, as.vector)
}
### Return a list with one list element per column in data frame 'x'.
### All the list elements have length 0.
.extract_data_frame_slice0 <- function(x)
{
slice0 <- x[0L, , drop=FALSE]
## Turn into a list and replace factors with character vectors.
lapply(slice0, as.vector)
}
.extract_DataFrame_slice0 <- function(x)
{
slice0 <- x[0L, , drop=FALSE]
slice0 <- as.data.frame(slice0)
if (ncol(slice0) != ncol(x))
stop(wmsg("DataFrame object 'x' can be used as the seed of ",
"a DelayedArray object only if as.data.frame(x) ",
"preserves the number of columns"))
## Turn into a list and replace factors with character vectors.
lapply(slice0, as.vector)
}
### Equivalent to 'typeof(as.matrix(x))' but with an almost-zero
### memory footprint (it avoids the cost of turning 'x' into a matrix).
.get_data_frame_type <- function(x)
{
if (ncol(x) == 0L)
return("logical")
slice0 <- .extract_data_frame_slice0(x)
typeof(unlist(slice0, use.names=FALSE))
}
### Equivalent to 'typeof(as.matrix(as.data.frame(x)))' but with an
### almost-zero memory footprint (it avoids the cost of turning 'x' first
### into a data frame then into a matrix).
.get_DataFrame_type <- function(x)
{
if (ncol(x) == 0L)
return("logical")
slice0 <- .extract_DataFrame_slice0(x)
typeof(unlist(slice0, use.names=FALSE))
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### extract_array() generic and methods
###
.contact_author_msg <- function(Class)
{
msg <- c("Please contact the author of the ", Class, " class")
class_package <- attr(Class, "package")
if (!is.null(class_package))
msg <- c(msg, " (defined in the ", class_package, " package)")
c(msg, " about this and point him/her to the man page for ",
"extract_array() in the DelayedArray package (?extract_array).")
}
check_returned_array <- function(ans, expected_dim, .Generic, x_class)
{
if (!is.array(ans))
stop(wmsg("The \"", .Generic, "\" method for ", x_class, " ",
"objects didn't return an ordinary array. ",
.Generic, "() should always return an ordinary ",
"array. ", .contact_author_msg(x_class)))
if (!identical(dim(ans), expected_dim))
stop(wmsg("The \"", .Generic, "\" method for ", x_class, " ",
"objects returned an array with incorrect ",
"dimensions. ", .contact_author_msg(x_class)))
ans
}
### 'index' is expected to be an unnamed list of subscripts as positive
### integer vectors, one vector per dimension in 'x'. *Missing* list elements
### are allowed and represented by NULLs.
### The "extract_array" methods don't need to support anything else.
### They must return an ordinary array. No need to propagate the dimnames.
setGeneric("extract_array", signature="x",
function(x, index)
{
x_dim <- dim(x)
if (is.null(x_dim))
stop(wmsg("first argument to extract_array() ",
"must be an array-like object"))
ans <- standardGeneric("extract_array")
expected_dim <- get_Nindex_lengths(index, x_dim)
check_returned_array(ans, expected_dim, "extract_array", class(x))
}
)
setMethod("extract_array", "ANY",
function(x, index)
{
slice <- subset_by_Nindex(x, index)
as.array(slice)
}
)
setMethod("extract_array", "array",
function(x, index) subset_by_Nindex(x, index)
)
### Equivalent to
###
### subset_by_Nindex(as.matrix(x), index)
###
### but avoids the cost of turning the full data frame 'x' into a matrix so
### memory footprint stays small when 'index' is small.
setMethod("extract_array", "data.frame",
function(x, index)
{
#ans_type <- .get_data_frame_type(x)
slice0 <- .extract_data_frame_slice0(x)
slice <- .extract_data_frame_slice(x, index)
data <- unlist(c(slice0, slice), use.names=FALSE)
array(data, dim=get_Nindex_lengths(index, dim(x)))
}
)
### Equivalent to
###
### subset_by_Nindex(as.matrix(as.data.frame(x)), index)
###
### but avoids the cost of turning the full DataFrame 'x' first into a data
### frame then into a matrix so memory footprint stays small when 'index' is
### small.
setMethod("extract_array", "DataFrame",
function(x, index)
{
#ans_type <- .get_DataFrame_type(x)
slice0 <- .extract_DataFrame_slice0(x)
slice <- .extract_DataFrame_slice(x, index)
data <- unlist(c(slice0, slice), use.names=FALSE)
array(data, dim=get_Nindex_lengths(index, dim(x)))
}
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### 2 convenience wrappers around extract_array()
###
### Perform extract_array(x, list(integer(0), ..., integer(0))).
### 'x' is **trusted** to be an array-like object.
extract_empty_array <- function(x)
{
index <- rep.int(list(integer(0)), length(dim(x)))
extract_array(x, index)
}
### An enhanced version of extract_array() that accepts an Nindex (see
### Nindex-utils.R) and propagates the dimnames.
### WARNING: The list elements in 'Nindex' can only be NULLs, integer
### vectors, or RangeNSBS objects at the moment. extract_array_by_Nindex()
### will break if they are not! See FIXME below.
extract_array_by_Nindex <- function(x, Nindex)
{
## TODO: Once we have a full Nindex normalization mechanism in place
## (see FIXME below), use it to normalize the supplied 'Nindex' in 2
## steps: (1) by normalizing with something like 'as.NSBSlist=TRUE'
## to produce an Nindex with NSBS list elements, then (2) by doing
## something like:
##
## lapply( , function(i) if (is.null(i)) NULL else as.integer(i))
##
## on the Nindex obtained at (1).
## Pass the Nindex obtained at (1) to subset_dimnames_by_Nindex() and
## the Nindex obtained at (2) to extract_array().
ans_dimnames <- subset_dimnames_by_Nindex(dimnames(x), Nindex)
## FIXME: The list elements of an Nindex can be anything (see
## Nindex-utils.R) so it's not enough to expand only those list elements
## that are RangeNSBS objects. For example the call to extract_array()
## below will fail if some subscripts in 'Nindex' are character vectors
## or Rle objects. We need to perform a full normalization of 'Nindex'
## like we do in new_DelayedSubset() (see DelayedOp-class.R). Note that
## we're good for now because extract_array_by_Nindex() is only used
## in the context of show_compact_array() and the default "read_block"
## method where the supplied 'Nindex' is guaranteed to contain only
## NULLs, integer vectors, or RangeNSBS objects.
ans <- extract_array(x, expand_Nindex_RangeNSBS(Nindex))
set_dimnames(ans, ans_dimnames)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### type() default method (the generic is defined in BiocGenerics)
###
### type() will work out-of-the-box on any array-like object that supports
### extract_array().
setMethod("type", "ANY",
function(x)
{
if (is.vector(x) || is.array(x))
return(typeof(x))
x_dim <- dim(x)
if (is.null(x_dim))
stop(wmsg("type() only supports array-like objects ",
"and ordinary vectors. See ?type in the ",
"DelayedArray package."))
type(extract_empty_array(x))
}
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### as.array(x) (in-memory realization of an array-like object)
###
### Realize the object i.e. execute all the delayed operations and turn the
### object back into an ordinary array.
.from_Array_to_array <- function(x, drop=FALSE)
{
if (!isTRUEorFALSE(drop))
stop("'drop' must be TRUE or FALSE")
index <- vector("list", length=length(dim(x)))
ans <- extract_array(x, index)
ans <- set_dimnames(ans, dimnames(x))
if (drop)
ans <- drop(ans)
ans
}
### S3/S4 combo for as.array.Array
as.array.Array <- function(x, ...) .from_Array_to_array(x, ...)
setMethod("as.array", "Array", .from_Array_to_array)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Other coercions to in-memory representations
###
### All these coercions are based on as.array().
###
.SLICING_TIP <- c(
"Consider reducing its number of effective dimensions by slicing it ",
"first (e.g. x[8, 30, , 2, ]). Make sure that all the indices used for ",
"the slicing have length 1 except at most 2 of them which can be of ",
"arbitrary length or missing."
)
.from_Array_to_matrix <- function(x)
{
x_dim <- dim(x)
if (sum(x_dim != 1L) > 2L)
stop(wmsg(class(x), " object with more than 2 effective dimensions ",
"cannot be coerced to a matrix. ", .SLICING_TIP))
ans <- as.array(x, drop=TRUE)
if (length(x_dim) == 2L) {
ans <- set_dim(ans, x_dim)
ans <- set_dimnames(ans, dimnames(x))
} else {
as.matrix(ans)
}
ans
}
### S3/S4 combo for as.matrix.Array
as.matrix.Array <- function(x, ...) .from_Array_to_matrix(x, ...)
setMethod("as.matrix", "Array", .from_Array_to_matrix)
### S3/S4 combo for as.data.frame.Array
as.data.frame.Array <- function(x, row.names=NULL, optional=FALSE, ...)
as.data.frame(as.array(x, drop=TRUE),
row.names=row.names, optional=optional, ...)
setMethod("as.data.frame", "Array", as.data.frame.Array)
### S3/S4 combo for as.vector.Array
as.vector.Array <- function(x, mode="any")
{
ans <- as.array(x, drop=TRUE)
as.vector(ans, mode=mode)
}
setMethod("as.vector", "Array", as.vector.Array)
### S3/S4 combo for as.logical.Array
as.logical.Array <- function(x, ...) as.vector(x, mode="logical", ...)
setMethod("as.logical", "Array", as.logical.Array)
### S3/S4 combo for as.integer.Array
as.integer.Array <- function(x, ...) as.vector(x, mode="integer", ...)
setMethod("as.integer", "Array", as.integer.Array)
### S3/S4 combo for as.numeric.Array
as.numeric.Array <- function(x, ...) as.vector(x, mode="numeric", ...)
setMethod("as.numeric", "Array", as.numeric.Array)
### S3/S4 combo for as.complex.Array
as.complex.Array <- function(x, ...) as.vector(x, mode="complex", ...)
setMethod("as.complex", "Array", as.complex.Array)
### S3/S4 combo for as.character.Array
as.character.Array <- function(x, ...) as.vector(x, mode="character", ...)
setMethod("as.character", "Array", as.character.Array)
### S3/S4 combo for as.raw.Array
as.raw.Array <- function(x) as.vector(x, mode="raw")
setMethod("as.raw", "Array", as.raw.Array)
|