1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
### =========================================================================
### Utilities to make capped volume boxes
### -------------------------------------------------------------------------
###
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### makeCappedVolumeBox()
###
### 'maxvol' is assumed to be a single integer >= 2 and < 'prod(maxdim)'.
.make_capped_volume_hypercube_box <- function(maxvol, maxdim)
{
ans <- maxdim
L <- max(ans)
while (TRUE) {
is_max <- ans == L
not_max_ans <- ans[!is_max]
L <- (maxvol / prod(not_max_ans)) ^ (1 / sum(is_max))
if (length(not_max_ans) == 0L)
break
L2 <- max(not_max_ans)
if (L >= L2)
break
L <- L2
ans[is_max] <- L
}
ans[is_max] <- as.integer(L)
q <- get_RegularArrayGrid_dim(maxdim, ans + 1L) /
get_RegularArrayGrid_dim(maxdim, ans)
for (along in which(is_max)[order(q[is_max])]) {
ans[[along]] <- ans[[along]] + 1L
p <- prod(ans)
if (p == maxvol)
break
if (p > maxvol) {
ans[[along]] <- ans[[along]] - 1L
break
}
}
ans
}
### 'maxvol' is assumed to be a single integer >= 2 and < 'prod(maxdim)'.
### The algo used below could be improved. For exampe it does some weird
### things like:
### > .make_capped_volume_scale_box(11, c(3, 50, 10))
### [1] 1 9 1
### > .make_capped_volume_scale_box(12, c(3, 50, 10))
### [1] 1 8 1
.make_capped_volume_scale_box <- function(maxvol, maxdim)
{
## Some good properties of shrinkbox():
## - The output dims are always >= 1.
## - If r is < 1, then input dims that are > 1 will decrease and those
## at 1 will remain at 1.
shrinkbox <- function(bdim, r) pmax(as.integer(bdim * r), 1L)
p <- 1 / length(maxdim)
bdim <- maxdim # all(maxdim >= 1) is TRUE
## Loop will typically go thru 2 to 18 iterations before it breaks.
## An example that requires 18 iterations:
## - maxvol <- 70000
## - maxdim <- c(30, 15000000)
while (TRUE) {
bvol <- prod(bdim) # can't be 0
if (bvol <= maxvol)
break
r <- (maxvol / bvol)^p # < 1
bdim <- shrinkbox(bdim, r) # reduce all dims (except those already
# at 1) so volume is guaranteed to reduce
# at each loop
}
bdim
}
### 'maxvol' is assumed to be a single integer >= 2 and < 'prod(maxdim)'.
.make_capped_volume_FDGF_box <- function(maxvol, maxdim)
{
p <- cumprod(maxdim)
w <- which(p <= maxvol)
N <- if (length(w) == 0L) 1L else w[[length(w)]] + 1L
if (N == 1L) {
by <- maxvol
} else {
by <- maxvol %/% as.integer(p[[N - 1L]])
}
c(head(maxdim, n=N-1L), by, rep.int(1L, length(maxdim)-N))
}
.make_capped_volume_LDGF_box <- function(maxvol, maxdim)
{
rev(.make_capped_volume_FDGF_box(maxvol, rev(maxdim)))
}
### Return the dimensions of a box that satisfies the following properties:
### 1. Has a volume as close as possibe to (but not bigger than) 'maxvol'.
### 2. Fits in the "constraining box" i.e. in the box of dimensions 'maxdim'.
### 3. Has a non-zero volume if the "constraining box" has a non-zero volume.
### 4. Has a shape that is as close as possible to the requested shape.
makeCappedVolumeBox <- function(maxvol, maxdim, shape=c("hypercube",
"scale",
"first-dim-grows-first",
"last-dim-grows-first"))
{
if (!isSingleNumber(maxvol))
stop("'maxvol' must be a single integer")
if (!is.integer(maxvol))
maxvol <- as.integer(maxvol)
if (maxvol < 0L)
stop("'maxvol' must be a non-negative integer")
if (!is.numeric(maxdim))
stop(wmsg("'maxdim' must be an integer vector"))
if (!is.integer(maxdim))
maxdim <- as.integer(maxdim)
shape <- match.arg(shape)
if (maxvol >= prod(maxdim))
return(maxdim)
if (maxvol == 0L)
return(integer(length(maxdim)))
if (maxvol == 1L)
return(rep.int(1L, length(maxdim)))
FUN <- switch(shape,
hypercube=.make_capped_volume_hypercube_box,
scale=.make_capped_volume_scale_box,
`first-dim-grows-first`=.make_capped_volume_FDGF_box,
`last-dim-grows-first`=.make_capped_volume_LDGF_box,
stop("unsupported 'shape'"))
FUN(maxvol, maxdim)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### makeRegularArrayGridOfCappedLengthViewports()
###
### A capped-volume box related utility.
### If 'viewport_shape' is "first-dim-grows-first", return a linear grid.
makeRegularArrayGridOfCappedLengthViewports <-
function(refdim, viewport_len, viewport_shape=c("hypercube",
"scale",
"first-dim-grows-first",
"last-dim-grows-first"))
{
spacings <- makeCappedVolumeBox(viewport_len, refdim, viewport_shape)
RegularArrayGrid(refdim, spacings)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Linear viewports and grids
###
### An array viewport is "linear" if it is made of reference array elements
### that would be contiguous in memory if the reference array was an ordinary
### R array (where the fastest changing dimension is the first one).
###
setGeneric("isLinear", function(x) standardGeneric("isLinear"))
setMethod("isLinear", "ArrayViewport",
function(x)
{
x_width <- width(x)
idx <- which(x_width != refdim(x))
if (length(idx) == 0L)
return(TRUE)
all(tail(x_width, n=-idx[[1L]]) == 1L)
}
)
### If the 1st grid element is linear, then they all are.
setMethod("isLinear", "ArrayGrid",
function(x)
{
if (length(x) == 0L)
return(TRUE)
isLinear(x[[1L]])
}
)
|