1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
### =========================================================================
### Some summarization methods that operate natively on dgCMatrix objects
### -------------------------------------------------------------------------
###
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### CsparseMatrix() -- NOT exported
###
### A replacement for Matrix::sparseMatrix() that is typically 50%-60% faster
### and more memory efficient. Like Matrix::sparseMatrix(), it only supports
### numeric or logical input data at the moment. If 'is.numeric(nzdata)' is
### TRUE, it returns a dgCMatrix object. If 'is.logical(nzdata)' is TRUE, it
### returns a lgCMatrix object. Any other type of input triggers an error.
### 'i', 'j', 'nzdata' must be **parallel** atomic vectors (integer vectors
### with no NAs for 'i' and 'j', and integer, double or logical vector for
### 'nzdata', possibly with NAs).
CsparseMatrix <- function(dim, i, j, nzdata, dimnames=NULL)
{
stopifnot(is.integer(dim), length(dim) == 2L,
is.integer(i), is.integer(j))
nzdata_type <- typeof(nzdata)
ans_class <- switch(nzdata_type,
'integer'=, 'double'="dgCMatrix",
'logical'="lgCMatrix",
stop(wmsg("unsupported data type: ", nzdata_type)))
dimnames <- normarg_dimnames(dimnames, dim)
oo <- order(j, i)
ans_i <- i[oo] - 1L # dgCMatrix and lgCMatrix objects want this zero-based
ans_p <- c(0L, cumsum(tabulate(j[oo], nbins=dim[[2L]])))
ans_x <- nzdata[oo]
if (is.integer(ans_x))
ans_x <- as.double(ans_x)
new(ans_class, Dim=dim, i=ans_i, p=ans_p, x=ans_x, Dimnames=dimnames)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### RsparseMatrix() -- NOT exported
###
RsparseMatrix <- function(dim, i, j, nzdata, dimnames=NULL)
{
stopifnot(is.integer(dim), length(dim) == 2L,
is.integer(i), is.integer(j))
nzdata_type <- typeof(nzdata)
ans_class <- switch(nzdata_type,
'integer'=, 'double'="dgRMatrix",
'logical'="lgRMatrix",
stop(wmsg("unsupported data type: ", nzdata_type)))
dimnames <- normarg_dimnames(dimnames, dim)
oo <- order(i, j)
ans_j <- j[oo] - 1L # dgRMatrix and lgRMatrix objects want this zero-based
ans_p <- c(0L, cumsum(tabulate(i[oo], nbins=dim[[1L]])))
ans_x <- nzdata[oo]
if (is.integer(ans_x))
ans_x <- as.double(ans_x)
new(ans_class, Dim=dim, j=ans_j, p=ans_p, x=ans_x, Dimnames=dimnames)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### rowsum() and colsum() methods
###
compute_ugroup <- function(group, expected_group_len, reorder=TRUE)
{
if (!(is.vector(group) || is.factor(group)))
stop(wmsg("'group' must be a vector or factor"))
if (length(group) != expected_group_len)
stop(wmsg("incorrect length for 'group'"))
if (!isTRUEorFALSE(reorder))
stop(wmsg("'reorder' must be TRUE or FALSE"))
## Taken from base::rowsum.default().
ugroup <- unique(group)
if (anyNA(ugroup))
warning(wmsg("missing values for 'group'"))
if (reorder)
ugroup <- sort(ugroup, na.last=TRUE, method="quick")
ugroup
}
.rowsum_dgCMatrix <- function(x, group, reorder=TRUE, na.rm=FALSE)
{
stopifnot(is(x, "dgCMatrix"))
ugroup <- compute_ugroup(group, nrow(x), reorder)
if (!isTRUEorFALSE(na.rm))
stop(wmsg("'na.rm' must be TRUE or FALSE"))
group <- match(group, ugroup)
ans <- .Call2("C_rowsum_dgCMatrix", x, group, length(ugroup), na.rm,
PACKAGE="DelayedArray")
dimnames(ans) <- list(as.character(ugroup), colnames(x))
ans
}
### The base package provides rowsum() only (as an S3 generic).
setGeneric("rowsum", signature="x")
setGeneric("colsum", signature="x",
function(x, group, reorder=TRUE, ...)
standardGeneric("colsum")
)
setMethod("colsum", "ANY",
function(x, group, reorder=TRUE, ...)
{
t(rowsum(t(x), group, reorder=reorder, ...))
}
)
### S3/S4 combo for rowsum.dgCMatrix
rowsum.dgCMatrix <- function(x, group, reorder=TRUE, ...)
.rowsum_dgCMatrix(x, group, reorder=reorder, ...)
setMethod("rowsum", "dgCMatrix", rowsum.dgCMatrix)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### colMins_dgCMatrix()
### colMaxs_dgCMatrix()
### colRanges_dgCMatrix()
### colVars_dgCMatrix()
###
### NOT exported.
###
### Don't turn these into formal S4 methods for dgCMatrix objects to avoid
### conflict with the methods defined in the sparseMatrixStats package!
### They do NOT propagate the colnames (the methods defined in matrixStats
### don't either).
colMins_dgCMatrix <- function (x, na.rm=FALSE)
{
stopifnot(is(x, "dgCMatrix"))
if (!isTRUEorFALSE(na.rm))
stop(wmsg("'na.rm' must be TRUE or FALSE"))
.Call2("C_colMins_dgCMatrix", x, na.rm, PACKAGE="DelayedArray")
}
colMaxs_dgCMatrix <- function (x, na.rm=FALSE)
{
stopifnot(is(x, "dgCMatrix"))
if (!isTRUEorFALSE(na.rm))
stop(wmsg("'na.rm' must be TRUE or FALSE"))
.Call2("C_colMaxs_dgCMatrix", x, na.rm, PACKAGE="DelayedArray")
}
### About 2x faster than the method for dgCMatrix objects defined
### in sparseMatrixStats.
colRanges_dgCMatrix <- function (x, na.rm=FALSE)
{
stopifnot(is(x, "dgCMatrix"))
if (!isTRUEorFALSE(na.rm))
stop(wmsg("'na.rm' must be TRUE or FALSE"))
.Call2("C_colRanges_dgCMatrix", x, na.rm, PACKAGE="DelayedArray")
}
### About 2.5x faster than the method for dgCMatrix objects defined
### in sparseMatrixStats.
colVars_dgCMatrix <- function(x, na.rm=FALSE)
{
stopifnot(is(x, "dgCMatrix"))
if (!isTRUEorFALSE(na.rm))
stop(wmsg("'na.rm' must be TRUE or FALSE"))
.Call2("C_colVars_dgCMatrix", x, na.rm, PACKAGE="DelayedArray")
}
|