1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
\name{AutoGrid}
\alias{AutoGrid}
\alias{defaultAutoGrid}
\alias{blockGrid}
\alias{rowAutoGrid}
\alias{rowGrid}
\alias{colAutoGrid}
\alias{colGrid}
\alias{getAutoGridMaker}
\alias{setAutoGridMaker}
\alias{defaultSinkAutoGrid}
\title{Create automatic grids to use for block processing
of array-like objects}
\description{
We provide various utility functions to create grids that can be used
for block processing of array-like objects:
\itemize{
\item \code{defaultAutoGrid()} is the default \emph{automatic grid maker}.
It creates a grid that is suitable for block processing of the
array-like object passed to it.
\item \code{rowAutoGrid()} and \code{colAutoGrid()} are more specialized
\emph{automatic grid makers}, for the 2-dimensional case.
They can be used to create a grid where the blocks are made of
full rows or full columns, respectively.
\item \code{defaultSinkAutoGrid()} is a specialized version of
\code{defaultAutoGrid()} for creating a grid that is suitable
for writing to a \link{RealizationSink} derivative while walking
on it.
}
}
\usage{
defaultAutoGrid(x, block.length=NULL, chunk.grid=NULL, block.shape=NULL)
## Two specialized "automatic grid makers" for the 2-dimensional case:
rowAutoGrid(x, nrow=NULL, block.length=NULL)
colAutoGrid(x, ncol=NULL, block.length=NULL)
## Replace default automatic grid maker with user-defined one:
getAutoGridMaker()
setAutoGridMaker(GRIDMAKER="defaultAutoGrid")
## A specialized version of defaultAutoGrid() to create an automatic
## grid on a RealizationSink derivative:
defaultSinkAutoGrid(sink, block.length=NULL, chunk.grid=NULL)
}
\arguments{
\item{x}{
An array-like or matrix-like object for \code{defaultAutoGrid}.
A matrix-like object for \code{rowAutoGrid} and \code{colAutoGrid}.
}
\item{block.length}{
The length of the blocks i.e. the number of array elements per block.
By default the automatic block length (returned by
\code{getAutoBlockLength(type(x))}, or \code{getAutoBlockLength(type(sink))}
in the case of \code{defaultSinkAutoGrid()}) is used.
Depending on how much memory is available on your machine, you might
want to increase (or decrease) the automatic block length by adjusting
the automatic block size with \code{setAutoBlockSize()}.
}
\item{chunk.grid}{
The grid of physical chunks.
By default \code{\link{chunkGrid}(x)} (or \code{\link{chunkGrid}(sink)}
in the case of \code{defaultSinkAutoGrid()}) is used.
}
\item{block.shape}{
A string specifying the shape of the blocks.
See \code{\link{makeCappedVolumeBox}} for a description of the
supported shapes.
By default \code{getAutoBlockShape()} is used.
}
\item{nrow}{
The number of rows of the blocks. The bottommost blocks might have less.
See examples below.
}
\item{ncol}{
The number of columns of the blocks. The rightmost blocks might have less.
See examples below.
}
\item{GRIDMAKER}{
The function to use as \emph{automatic grid maker}, that is, the
function that will be used by \code{\link{blockApply}()} and
\code{\link{blockReduce}()} to make a grid when no grid is supplied
via their \code{grid} argument.
The function will be called on array-like object \code{x} and must
return an \link{ArrayGrid} object, say \code{grid}, that is compatible
with \code{x} i.e. such that \code{refdim(grid)} is identical to
\code{dim(x)}.
\code{GRIDMAKER} can be specified as a function or as a single string
naming a function. It can be a user-defined function or a pre-defined
grid maker like \code{defaultAutoGrid}, \code{rowAutoGrid}, or
\code{colAutoGrid}.
The \emph{automatic grid maker} is set to \code{defaultAutoGrid} at
package startup and can be reset anytime to this value by calling
\code{setAutoGridMaker()} with no argument.
}
\item{sink}{
A \link{RealizationSink} derivative.
}
}
\details{
By default, primary block processing functions \code{\link{blockApply}()}
and \code{\link{blockReduce}()} use the grid returned by
\code{defaultAutoGrid(x)} to walk on the blocks of array-like
object \code{x}. This can be changed with \code{setAutoGridMaker()}.
By default \code{\link{sinkApply}()} uses the grid returned by
\code{defaultSinkAutoGrid(sink)} to walk on the viewports of
\link{RealizationSink} derivative \code{sink} and write to them.
}
\value{
\code{defaultAutoGrid}: An \link{ArrayGrid} object on reference array
\code{x}. The grid elements define the blocks that will be used to
process \code{x} by block. The grid is \emph{optimal} in the sense that:
\enumerate{
\item It's \emph{compatible} with the grid of physical chunks a.k.a.
\emph{chunk grid}. This means that, when the chunk grid is known
(i.e. when \code{\link{chunkGrid}(x)} is not NULL or
\code{chunk.grid} is supplied), every block in the grid contains
one or more \emph{full} chunks. In other words, chunks never cross
block boundaries.
\item Its \emph{resolution} is such that the blocks have a length
that is as close as possibe to (but does not exceed)
\code{block.length}. An exception is made when some chunks
already have a length that is >= \code{block.length}, in which
case the returned grid is the same as the chunk grid.
}
Note that the returned grid is regular (i.e. is a \link{RegularArrayGrid}
object) unless the chunk grid is not regular (i.e. is an
\link{ArbitraryArrayGrid} object).
\code{rowAutoGrid}: A \link{RegularArrayGrid} object on reference array
\code{x} where the grid elements define blocks made of full rows of \code{x}.
\code{colAutoGrid}: A \link{RegularArrayGrid} object on reference array
\code{x} where the grid elements define blocks made of full columns
of \code{x}.
\code{defaultSinkAutoGrid}: Like \code{defaultAutoGrid} except
that \code{defaultSinkAutoGrid} always returns a grid with a
"first-dim-grows-first" shape (note that, unlike the former, the
latter has no \code{block.shape} argument).
The advantage of using a grid with a "first-dim-grows-first" shape in
the context of writing to the viewports of a \link{RealizationSink}
derivative is that such a grid is guaranteed to work with "linear write
only" realization backends. See important notes about "Cross realization
backend compatibility" in \code{?\link{write_block}} for more information.
}
\seealso{
\itemize{
\item \code{\link{setAutoBlockSize}} and \code{\link{setAutoBlockShape}}
to control the geometry of automatic blocks.
\item \code{\link{blockApply}} and family for convenient block
processing of an array-like object.
\item \link{ArrayGrid} for the formal representation of grids and
viewports.
\item The \code{\link{makeCappedVolumeBox}} utility to make
\emph{capped volume boxes}.
\item \code{\link{chunkGrid}}.
\item \code{\link{read_block}} and \code{\link{write_block}}.
}
}
\examples{
## ---------------------------------------------------------------------
## A VERSION OF sum() THAT USES BLOCK PROCESSING
## ---------------------------------------------------------------------
block_sum <- function(a, grid) {
sums <- lapply(grid, function(viewport) sum(read_block(a, viewport)))
sum(unlist(sums))
}
## On an ordinary matrix:
m <- matrix(runif(600), ncol=12)
m_grid <- defaultAutoGrid(m, block.length=120)
sum1 <- block_sum(m, m_grid)
sum1
## On a DelayedArray object:
library(HDF5Array)
M <- as(m, "HDF5Array")
sum2 <- block_sum(M, m_grid)
sum2
sum3 <- block_sum(M, colAutoGrid(M, block.length=120))
sum3
sum4 <- block_sum(M, rowAutoGrid(M, block.length=80))
sum4
## Sanity checks:
sum0 <- sum(m)
stopifnot(identical(sum1, sum0))
stopifnot(identical(sum2, sum0))
stopifnot(identical(sum3, sum0))
stopifnot(identical(sum4, sum0))
## ---------------------------------------------------------------------
## defaultAutoGrid()
## ---------------------------------------------------------------------
grid <- defaultAutoGrid(m, block.length=120)
grid
as.list(grid) # turn the grid into a list of ArrayViewport objects
table(lengths(grid))
stopifnot(maxlength(grid) <= 120)
grid <- defaultAutoGrid(m, block.length=120,
block.shape="first-dim-grows-first")
grid
table(lengths(grid))
stopifnot(maxlength(grid) <= 120)
grid <- defaultAutoGrid(m, block.length=120,
block.shape="last-dim-grows-first")
grid
table(lengths(grid))
stopifnot(maxlength(grid) <= 120)
defaultAutoGrid(m, block.length=100)
defaultAutoGrid(m, block.length=75)
defaultAutoGrid(m, block.length=25)
defaultAutoGrid(m, block.length=20)
defaultAutoGrid(m, block.length=10)
## ---------------------------------------------------------------------
## rowAutoGrid() AND colAutoGrid()
## ---------------------------------------------------------------------
rowAutoGrid(m, nrow=10) # 5 blocks of 10 rows each
rowAutoGrid(m, nrow=15) # 3 blocks of 15 rows each plus 1 block of 5 rows
colAutoGrid(m, ncol=5) # 2 blocks of 5 cols each plus 1 block of 2 cols
## See '?write_block' for an advanced example of user-implemented
## block processing using colAutoGrid() and a realization sink.
## ---------------------------------------------------------------------
## REPLACE DEFAULT AUTOMATIC GRID MAKER WITH USER-DEFINED ONE
## ---------------------------------------------------------------------
getAutoGridMaker()
setAutoGridMaker(function(x) colAutoGrid(x, ncol=5))
getAutoGridMaker()
blockApply(m, function(block) currentViewport())
## Reset automatic grid maker to factory settings:
setAutoGridMaker()
}
\keyword{utilities}
|