1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
\name{RleArray-class}
\docType{class}
\alias{class:RleArray}
\alias{RleArray-class}
\alias{RleArray}
\alias{DelayedArray,RleArraySeed-method}
\alias{coerce,RleArray,Rle-method}
\alias{class:RleMatrix}
\alias{RleMatrix-class}
\alias{RleMatrix}
\alias{matrixClass,RleArray-method}
\alias{coerce,RleArray,RleMatrix-method}
\alias{coerce,RleMatrix,RleArray-method}
\alias{coerce,ANY,RleMatrix-method}
\alias{coerce,RleList,RleArray-method}
\alias{coerce,RleMatrix,RleList-method}
\alias{coerce,DataFrame,RleArray-method}
\alias{coerce,RleMatrix,DataFrame-method}
\alias{coerce,DelayedMatrix,DataFrame-method}
\alias{write_block,RleRealizationSink-method}
\alias{coerce,RleRealizationSink,RleArray-method}
\alias{coerce,RleRealizationSink,DelayedArray-method}
\alias{coerce,ANY,RleArray-method}
\alias{coerce,DelayedArray,RleArray-method}
\alias{coerce,DelayedMatrix,RleMatrix-method}
\title{RleArray objects}
\description{
The RleArray class is a \link[DelayedArray]{DelayedArray} subclass
for representing an in-memory Run Length Encoded array-like dataset.
All the operations available for \link[DelayedArray]{DelayedArray}
objects work on RleArray objects.
}
\usage{
## Constructor function:
RleArray(data, dim, dimnames, chunksize=NULL)
}
\arguments{
\item{data}{
An \link[S4Vectors]{Rle} object, or an ordinary list of Rle objects,
or an \link[IRanges]{RleList} object, or a \link[S4Vectors]{DataFrame}
object where all the columns are Rle objects. More generally speaking,
\code{data} can be any list-like object where all the list elements
are Rle objects.
}
\item{dim}{
The dimensions of the object to be created, that is, an integer vector
of length one or more giving the maximal indices in each dimension.
}
\item{dimnames}{
The \emph{dimnames} of the object to be created. Must be \code{NULL} or
a list of length the number of dimensions. Each list element must be
either \code{NULL} or a character vector along the corresponding dimension.
}
\item{chunksize}{
Experimental. Don't use!
}
}
\value{
An RleArray (or RleMatrix) object. (Note that RleMatrix extends RleArray.)
}
\seealso{
\itemize{
\item \link[S4Vectors]{Rle} and \link[S4Vectors]{DataFrame} objects
in the \pkg{S4Vectors} package and \link[IRanges]{RleList} objects
in the \pkg{IRanges} package.
\item \link{DelayedArray} objects.
\item \link{DelayedArray-utils} for common operations on
\link{DelayedArray} objects.
\item \code{\link{realize}} for realizing a DelayedArray object in memory
or on disk.
\item \link{ConstantArray} objects for mimicking an array containing
a constant value, without actually creating said array in memory.
\item \link[HDF5Array]{HDF5Array} objects in the \pkg{HDF5Array} package.
\item The \link{RleArraySeed} helper class.
}
}
\examples{
## ---------------------------------------------------------------------
## A. BASIC EXAMPLE
## ---------------------------------------------------------------------
data <- Rle(sample(6L, 500000, replace=TRUE), 8)
a <- array(data, dim=c(50, 20, 4000)) # array() expands the Rle object
# internally with as.vector()
A <- RleArray(data, dim=c(50, 20, 4000)) # Rle object is NOT expanded
A
object.size(a)
object.size(A)
stopifnot(identical(a, as.array(A)))
as(A, "Rle") # deconstruction
toto <- function(x) (5 * x[ , , 1] ^ 3 + 1L) * log(x[, , 2])
m1 <- toto(a)
head(m1)
M1 <- toto(A) # very fast! (operations are delayed)
M1
stopifnot(identical(m1, as.array(M1)))
cs <- colSums(m1)
CS <- colSums(M1)
stopifnot(identical(cs, CS))
## Coercing a DelayedMatrix object to DataFrame produces a DataFrame
## object with Rle columns:
as(M1, "DataFrame")
## ---------------------------------------------------------------------
## B. MAKING AN RleArray OBJECT FROM A LIST-LIKE OBJECT OF Rle OBJECTS
## ---------------------------------------------------------------------
## From a DataFrame object:
DF <- DataFrame(A=Rle(sample(3L, 100, replace=TRUE)),
B=Rle(sample(3L, 100, replace=TRUE)),
C=Rle(sample(3L, 100, replace=TRUE) - 0.5),
row.names=sprintf("ID\%03d", 1:100))
M2 <- RleArray(DF)
M2
A3 <- RleArray(DF, dim=c(25, 6, 2))
A3
M4 <- RleArray(DF, dim=c(25, 12), dimnames=list(LETTERS[1:25], NULL))
M4
## From an ordinary list:
## If all the supplied Rle objects have the same length and if the 'dim'
## argument is not specified, then the RleArray() constructor returns an
## RleMatrix object with 1 column per Rle object. If the 'dimnames'
## argument is not specified, then the names on the list are propagated
## as the colnames of the returned object.
data <- as.list(DF)
M2b <- RleArray(data)
A3b <- RleArray(data, dim=c(25, 6, 2))
M4b <- RleArray(data, dim=c(25, 12), dimnames=list(LETTERS[1:25], NULL))
data2 <- list(Rle(sample(3L, 9, replace=TRUE)) * 11L,
Rle(sample(3L, 15, replace=TRUE)))
\dontrun{
RleArray(data2) # error! (cannot infer the dim)
}
RleArray(data2, dim=c(4, 6))
## From an RleList object:
data <- RleList(data)
M2c <- RleArray(data)
A3c <- RleArray(data, dim=c(25, 6, 2))
M4c <- RleArray(data, dim=c(25, 12), dimnames=list(LETTERS[1:25], NULL))
data2 <- RleList(data2)
\dontrun{
RleArray(data2) # error! (cannot infer the dim)
}
RleArray(data2, dim=4:2)
## Sanity checks:
data0 <- as.vector(unlist(DF, use.names=FALSE))
m2 <- matrix(data0, ncol=3, dimnames=dimnames(M2))
stopifnot(identical(m2, as.matrix(M2)))
rownames(m2) <- NULL
stopifnot(identical(m2, as.matrix(M2b)))
stopifnot(identical(m2, as.matrix(M2c)))
a3 <- array(data0, dim=c(25, 6, 2))
stopifnot(identical(a3, as.array(A3)))
stopifnot(identical(a3, as.array(A3b)))
stopifnot(identical(a3, as.array(A3c)))
m4 <- matrix(data0, ncol=12, dimnames=dimnames(M4))
stopifnot(identical(m4, as.matrix(M4)))
stopifnot(identical(m4, as.matrix(M4b)))
stopifnot(identical(m4, as.matrix(M4c)))
## ---------------------------------------------------------------------
## C. COERCING FROM RleList OR DataFrame TO RleMatrix
## ---------------------------------------------------------------------
## Coercing an RleList object to RleMatrix only works if all the list
## elements in the former have the same length.
x <- RleList(A=Rle(sample(3L, 20, replace=TRUE)),
B=Rle(sample(3L, 20, replace=TRUE)))
M <- as(x, "RleMatrix")
stopifnot(identical(x, as(M, "RleList")))
x <- DataFrame(A=x[[1]], B=x[[2]], row.names=letters[1:20])
M <- as(x, "RleMatrix")
stopifnot(identical(x, as(M, "DataFrame")))
## ---------------------------------------------------------------------
## D. CONSTRUCTING A LARGE RleArray OBJECT
## ---------------------------------------------------------------------
## The RleArray() constructor does not accept a "long" Rle object (i.e.
## an object of length > .Machine$integer.max) at the moment:
\dontrun{
RleArray(Rle(5, 3e9), dim=c(3, 1e9)) # error!
}
## The workaround is to supply a list of Rle objects instead:
toy_Rle <- function() {
run_lens <- c(sample(4), sample(rep(c(1:19, 40) * 3, 6e4)), sample(4))
run_vals <- sample(700, length(run_lens), replace=TRUE) / 5
Rle(run_vals, run_lens)
}
rle_list <- lapply(1:80, function(j) toy_Rle()) # takes about 20 sec.
## Cumulative length of all the Rle objects is > .Machine$integer.max:
sum(lengths(rle_list)) # 3.31e+09
## Feed 'rle_list' to the RleArray() constructor:
dim <- c(14395, 320, 719)
A <- RleArray(rle_list, dim)
A
## Because all the Rle objects in 'rle_list' have the same length, we
## can call RleArray() on it without specifying the 'dim' argument. This
## returns an RleMatrix object where each column corresponds to an Rle
## object in 'rle_list':
M <- RleArray(rle_list)
M
stopifnot(identical(as(rle_list, "RleList"), as(M, "RleList")))
## ---------------------------------------------------------------------
## E. CHANGING THE TYPE OF AN RleArray OBJECT FROM "double" TO "integer"
## ---------------------------------------------------------------------
## An RleArray object is an in-memory object so it can be useful to
## reduce its memory footprint. For an object of type "double" this can
## be done by changing its type to "integer" (integers are half the size
## of doubles in memory). Of course this only makes sense if this results
## in a loss of precision that is acceptable.
## On an ordinary array (or matrix) 'a', this is simply a matter of
## doing 'storage.mode(a) <- "integer"'. However, with a DelayedArray
## object, things are a little bit different. Let's do this on a subset
## of the RleMatrix object 'M' created in the previous section.
M1 <- as(M[1:6e5, ], "RleMatrix")
rm(M)
## First of all, it's important to be aware that object.size() (from
## package utils) is NOT reliable on RleArray objects! This is because
## the data in an RleArray object is stored in an environment and
## object.size() stubbornly refuses to take the content of an environment
## into account when computing its size:
object.size(list2env(list(aa=1:10))) # 56 bytes
object.size(list2env(list(aa=1:1e6))) # always 56 bytes!
## So we'll use obj_size() instead (from package lobstr):
library(lobstr)
obj_size(list2env(list(aa=1:10))) # 264 B
obj_size(list2env(list(aa=1:1e6))) # 4 MB
obj_size(list2env(list(aa=as.double(1:1e6)))) # 8 MB
obj_size(M1) # 16.7 MB
type(M1) <- "integer" # Delayed!
M1 # Note the class: it's no longer RleMatrix!
# (That's because the object now carries delayed
# operations.)
## Because changing the type is a delayed operation, the memory footprint
## of the object has not changed yet (remember that the original data in
## a DelayedArray object is stored in its "seed" and its seed is never
## modified **in-place**, that is, no operation on the object will ever
## modify its seed):
obj_size(M1) # Still the same (well, a very tiny more, because the
# object is now carrying one more delayed operation,
# the `type<-` operation)
## To effectively reduce the memory footprint of the object, a new object
## needs to be created. This is achieved simply by **realizing** M1 as a
## (new) RleArray object. Note that this realization will use block
## processing:
DelayedArray:::set_verbose_block_processing(TRUE) # See block processing
# in action.
getAutoBlockSize() # Automatic block size (100 Mb by default).
setAutoBlockSize(20e6) # Set automatic block size to 20 Mb.
M2 <- as(M1, "RleArray")
DelayedArray:::set_verbose_block_processing(FALSE)
setAutoBlockSize() # Reset automatic block size to factory settings.
M2
obj_size(M2) # 6.91 MB (Less than half the original size! This is
# because RleArray objects use some internal tricks to
# reduce memory footprint even more when the data in
# their seed is of type "integer".)
## Finally note that the 2-step approach described here (i.e.
## type(A) <- "integer" followed by realization) is generic and works
## on any kind of DelayedArray object or derivative. In particular,
## after doing 'type(A) <- "integer"', 'A' can be realized as anything
## as long as the realization backend is supported (e.g. could be
## 'as(A, "HDF5Array")' or 'as(A, "TENxMatrix")') and realization will
## always use block processing so the array data will never be fully
## loaded in memory.
}
\keyword{classes}
\keyword{methods}
|