File: SparseArraySeed-class.Rd

package info (click to toggle)
r-bioc-delayedarray 0.24.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,480 kB
  • sloc: ansic: 727; makefile: 2
file content (266 lines) | stat: -rw-r--r-- 7,689 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
\name{SparseArraySeed-class}
\docType{class}

\alias{class:SparseArraySeed}
\alias{SparseArraySeed-class}
\alias{SparseArraySeed}

\alias{nzindex}
\alias{nzindex,SparseArraySeed-method}
\alias{nzdata}
\alias{nzdata,SparseArraySeed-method}
\alias{dimnames,SparseArraySeed-method}
\alias{dimnames<-,SparseArraySeed,ANY-method}
\alias{sparsity}
\alias{sparsity,SparseArraySeed-method}

\alias{dense2sparse}
\alias{sparse2dense}

\alias{is_sparse<-}
\alias{is_sparse,ANY-method}
\alias{extract_sparse_array}

\alias{is_sparse,SparseArraySeed-method}
\alias{extract_sparse_array,SparseArraySeed-method}
\alias{extract_array,SparseArraySeed-method}

\alias{as.array.SparseArraySeed}
\alias{as.array,SparseArraySeed-method}
\alias{as.matrix.SparseArraySeed}
\alias{as.matrix,SparseArraySeed-method}

\alias{coerce,ANY,SparseArraySeed-method}

\alias{coerce,SparseArraySeed,CsparseMatrix-method}
\alias{coerce,SparseArraySeed,RsparseMatrix-method}
\alias{coerce,SparseArraySeed,sparseMatrix-method}
\alias{coerce,SparseArraySeed,dgCMatrix-method}
\alias{coerce,SparseArraySeed,dgRMatrix-method}
\alias{coerce,SparseArraySeed,lgCMatrix-method}
\alias{coerce,SparseArraySeed,lgRMatrix-method}

\alias{coerce,dgCMatrix,SparseArraySeed-method}
\alias{coerce,dgRMatrix,SparseArraySeed-method}
\alias{coerce,lgCMatrix,SparseArraySeed-method}
\alias{coerce,lgRMatrix,SparseArraySeed-method}

\alias{is_sparse,dgCMatrix-method}
\alias{is_sparse,dgRMatrix-method}
\alias{is_sparse,lgCMatrix-method}
\alias{is_sparse,lgRMatrix-method}
\alias{extract_sparse_array,dgCMatrix-method}
\alias{extract_sparse_array,dgRMatrix-method}
\alias{extract_sparse_array,lgCMatrix-method}
\alias{extract_sparse_array,lgRMatrix-method}

\alias{aperm.SparseArraySeed}
\alias{aperm,SparseArraySeed-method}

\title{SparseArraySeed objects}

\description{
  SparseArraySeed objects are used internally to support block processing
  of array-like objects.
}

\usage{
## Constructor function:
SparseArraySeed(dim, nzindex=NULL, nzdata=NULL, dimnames=NULL, check=TRUE)

## Getters (in addition to dim(), length(), and dimnames()):
nzindex(x)
nzdata(x)
sparsity(x)

## Two low-level utilities:
dense2sparse(x)
sparse2dense(sas)
}

\arguments{
  \item{dim}{
    The dimensions (specified as an integer vector) of the
    SparseArraySeed object to create.
  }
  \item{nzindex}{
    A matrix containing the array indices of the nonzero data.

    This must be an integer matrix like one returned by
    \code{base::\link[base]{arrayInd}}, that is, with \code{length(dim)}
    columns and where each row is an n-uplet representing an \emph{array index}.
  }
  \item{nzdata}{
    A vector (atomic or list) of length \code{nrow(nzindex)} containing
    the nonzero data.
  }
  \item{dimnames}{
    The \emph{dimnames} of the object to be created. Must be \code{NULL} or
    a list of length the number of dimensions. Each list element must be
    either \code{NULL} or a character vector along the corresponding dimension.
  }
  \item{check}{
    Should the object be validated upon construction?
  }
  \item{x}{
    A SparseArraySeed object for the \code{nzindex}, \code{nzdata}, and
    \code{sparsity} getters.

    An array-like object for \code{dense2sparse}.
  }
  \item{sas}{
    A SparseArraySeed object.
  }
}

\value{
  \itemize{
    \item For \code{SparseArraySeed()}: A SparseArraySeed instance.

    \item For \code{nzindex()}: The matrix containing the array indices of the
          nonzero data.

    \item For \code{nzdata()}: The vector of nonzero data.

    \item For \code{sparsity()}: The number of zero-valued elements
          in the implicit array divided by the total number of array
          elements (a.k.a. the length of the array).

    \item For \code{dense2sparse()}: A SparseArraySeed instance.

    \item For \code{sparse2dense()}: An ordinary array.
  }
}

\seealso{
  \itemize{
    \item \link{SparseArraySeed-utils} for native operations on
          SparseArraySeed objects.

    \item S4 classes \linkS4class{dgCMatrix}, \linkS4class{dgRMatrix}, and
          \linkS4class{lsparseMatrix}, defined in the \pkg{Matrix} package,
          for the de facto standard of sparse matrix representations in R.

    \item The \code{\link{read_block}} function.

    \item \code{\link{blockApply}} and family for convenient block
          processing of an array-like object.

    \item \code{\link{extract_array}}.

    \item \link{DelayedArray} objects.

    \item \code{\link[base]{arrayInd}} in the \pkg{base} package.

    \item \link[base]{array} objects in base R.
  }
}

\examples{
## ---------------------------------------------------------------------
## EXAMPLE 1
## ---------------------------------------------------------------------
dim1 <- 5:3
nzindex1 <- Lindex2Mindex(sample(60, 8), 5:3)
nzdata1 <- 11.11 * seq_len(nrow(nzindex1))
sas1 <- SparseArraySeed(dim1, nzindex1, nzdata1)

dim(sas1)        # the dimensions of the implicit array
length(sas1)     # the length of the implicit array
nzindex(sas1)
nzdata(sas1)
type(sas1)
sparsity(sas1)

sparse2dense(sas1)
as.array(sas1)   # same as sparse2dense(sas1)

\dontrun{
as.matrix(sas1)  # error!
}
## ---------------------------------------------------------------------
## EXAMPLE 2
## ---------------------------------------------------------------------
m2 <- matrix(c(5:-2, rep.int(c(0L, 99L), 11)), ncol=6)
sas2 <- dense2sparse(m2)
class(sas2)
dim(sas2)
length(sas2)
nzindex(sas2)
nzdata(sas2)
type(sas2)
sparsity(sas2)

stopifnot(identical(sparse2dense(sas2), m2))

as.matrix(sas2)  # same as sparse2dense(sas2)

t(sas2)
stopifnot(identical(as.matrix(t(sas2)), t(as.matrix(sas2))))

## ---------------------------------------------------------------------
## COERCION FROM/TO dg[C|R]Matrix OR lg[C|R]Matrix OBJECTS
## ---------------------------------------------------------------------
## dg[C|R]Matrix and lg[C|R]Matrix objects are defined in the Matrix
## package.

## dgCMatrix/dgRMatrix:

M2C <- as(sas2, "dgCMatrix")
stopifnot(identical(M2C, as(m2, "dgCMatrix")))

sas2C <- as(M2C, "SparseArraySeed")
## 'sas2C' is the same as 'sas2' except that 'nzdata(sas2C)' has
## type "double" instead of "integer":
stopifnot(all.equal(sas2, sas2C))
typeof(nzdata(sas2C))  # double
typeof(nzdata(sas2))   # integer

M2R <- as(sas2, "dgRMatrix")
stopifnot(identical(M2R, as(m2, "dgRMatrix")))
sas2R <- as(M2R, "SparseArraySeed")
stopifnot(all.equal(as.matrix(sas2), as.matrix(sas2R)))

## lgCMatrix/lgRMatrix:

m3 <- m2 == 99  # logical matrix
sas3 <- dense2sparse(m3)
class(sas3)
type(sas3)

M3C <- as(sas3, "lgCMatrix")
stopifnot(identical(M3C, as(m3, "lgCMatrix")))
sas3C <- as(M3C, "SparseArraySeed")
identical(as.matrix(sas3), as.matrix(sas3C))

M3R <- as(sas3, "lgRMatrix")
#stopifnot(identical(M3R, as(m3, "lgRMatrix")))
sas3R <- as(M3R, "SparseArraySeed")
identical(as.matrix(sas3), as.matrix(sas3R))

## ---------------------------------------------------------------------
## SEED CONTRACT
## ---------------------------------------------------------------------
## SparseArraySeed objects comply with the "seed contract".
## In particular they support extract_array():
extract_array(sas1, list(c(5, 3:2, 5), NULL, 3))

## See '?extract_array' for more information about the "seed contract".

## This means that they can be wrapped in a DelayedArray object:
A1 <- DelayedArray(sas1)
A1

## A big very sparse DelayedMatrix object:
nzindex4 <- cbind(sample(25000, 600000, replace=TRUE),
                  sample(195000, 600000, replace=TRUE))
nzdata4 <- runif(600000)
sas4 <- SparseArraySeed(c(25000, 195000), nzindex4, nzdata4)
sparsity(sas4)

M4 <- DelayedArray(sas4)
M4
colSums(M4[ , 1:20])
}
\keyword{classes}
\keyword{methods}