1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
\name{simplify}
% simplify()
\alias{simplify}
\alias{simplify,ANY-method}
\alias{simplify,DelayedSubset-method}
\alias{simplify,DelayedAperm-method}
\alias{simplify,DelayedUnaryIsoOpStack-method}
\alias{simplify,DelayedUnaryIsoOpWithArgs-method}
\alias{simplify,DelayedSubassign-method}
\alias{simplify,DelayedSetDimnames-method}
\alias{simplify,DelayedNaryIsoOp-method}
\alias{simplify,DelayedAbind-method}
\alias{simplify,DelayedArray-method}
% isPristine() & contentIsPristine()
\alias{isPristine}
\alias{contentIsPristine}
% netSubsetAndAperm()
\alias{netSubsetAndAperm}
\alias{netSubsetAndAperm,ANY-method}
\alias{netSubsetAndAperm,DelayedArray-method}
\title{Simplify a tree of delayed operations}
\description{
NOTE: The tools documented in this man page are primarily intended
for developers or advanced users curious about the internals of the
\pkg{DelayedArray} package. End users typically don't need them for
their regular use of \link{DelayedArray} objects.
In a \link{DelayedArray} object, the delayed operations are stored as a
tree of \link{DelayedOp} objects. See \code{?\link{DelayedOp}} for more
information about this tree.
\code{simplify} can be used to simplify the tree of delayed operations
in a \link{DelayedArray} object.
\code{isPristine} can be used to know whether a \link{DelayedArray}
object is \emph{pristine} or not. A \link{DelayedArray} object is
considered \emph{pristine} when it carries no delayed operation.
Note that an object that carries delayed operations that do nothing
(e.g. \code{A + 0}) is not considered \emph{pristine}.
\code{contentIsPristine} can be used to know whether the delayed
operations in a \link{DelayedArray} object \emph{touch} its array
elements or not.
\code{netSubsetAndAperm} returns an object that represents the \emph{net
subsetting} and \emph{net dimension rearrangement} of all the delayed
operations in a \link{DelayedArray} object.
}
\usage{
simplify(x, incremental=FALSE)
isPristine(x, ignore.dimnames=FALSE)
contentIsPristine(x)
netSubsetAndAperm(x, as.DelayedOp=FALSE)
}
\arguments{
\item{x}{
Typically a \link{DelayedArray} object but can also be a \link{DelayedOp}
object (except for \code{isPristine}).
}
\item{incremental}{
For internal use.
}
\item{ignore.dimnames}{
\code{TRUE} or \code{FALSE}. When \code{TRUE}, the object is considered
\emph{pristine} even if its dimnames have been modified and no longer
match the dimnames of its seed (in which case the object carries a
single delayed operations of type \link{DelayedSetDimnames}).
}
\item{as.DelayedOp}{
\code{TRUE} or \code{FALSE}. Controls the form of the returned object.
See details below.
}
}
\details{
\code{netSubsetAndAperm} is only supported on a \link{DelayedArray}
object \code{x} with a single seed i.e. if \code{nseed(x) == 1}.
The mapping between the array elements of \code{x} and the array elements
of its seed is affected by the following delayed operations carried by
\code{x}: \code{[}, \code{drop()}, and \code{aperm()}.
\code{x} can carry any number of each of these operations in any order but
their net result can always be described by a \emph{net subsetting}
followed by a \emph{net dimension rearrangement}.
\code{netSubsetAndAperm(x)} returns an object that represents the
\emph{net subsetting} and \emph{net dimension rearrangement}.
The \code{as.DelayedOp} argument controls in what form this object should
be returned:
\itemize{
\item If \code{as.DelayedOp} is \code{FALSE} (the default), the returned
object is a list of subscripts that describes the \emph{net
subsetting}. The list contains one subscript per dimension in the
seed. Each subscript can be either a vector of positive integers
or a \code{NULL}. A \code{NULL} indicates a \emph{missing subscript}.
In addition, if \code{x} carries delayed operations that rearrange
its dimensions (i.e. operations that drop and/or permute some of
the original dimensions), the \emph{net dimension rearrangement}
is described in a \code{dimmap} attribute added to the list. This
attribute is an integer vector parallel to \code{dim(x)} that
reports how the dimensions of \code{x} are mapped to the dimensions
of its seed.
\item If \code{as.DelayedOp} is \code{TRUE}, the returned object is a
linear tree with 2 \link{DelayedOp} nodes and a leaf node. The
leaf node is the seed of \code{x}. Walking the tree from the seed,
the 2 \link{DelayedOp} nodes are of type \link{DelayedSubset} and
\link{DelayedAperm}, in that order (this reflects the order in
which the operations apply). More precisely, the returned object
is a \link{DelayedAperm} object with one child (the
\link{DelayedSubset} object), and one grandchid (the seed of
\code{x}).
The \link{DelayedSubset} and \link{DelayedAperm} nodes represent
the \emph{net subsetting} and \emph{net dimension rearrangement},
respectively. Either or both of them can be a no-op.
}
Note that the returned object describes how the array elements of \code{x}
map to their corresponding array element in \code{seed(x)}.
}
\value{
The simplified object for \code{simplify}.
\code{TRUE} or \code{FALSE} for \code{contentIsPristine}.
An ordinary list (possibly with the \code{dimmap} attribute on it) for
\code{netSubsetAndAperm}. Unless \code{as.DelayedOp} is set to \code{TRUE},
in which case a \link{DelayedAperm} object is returned (see Details
section above for more information).
}
\seealso{
\itemize{
\item \code{\link{showtree}} to visualize and access the leaves of
a tree of delayed operations carried by a \link{DelayedArray}
object.
\item \link{DelayedOp} objects.
\item \link{DelayedArray} objects.
}
}
\examples{
## ---------------------------------------------------------------------
## Simplification of the tree of delayed operations
## ---------------------------------------------------------------------
m1 <- matrix(runif(150), nrow=15, ncol=10)
M1 <- DelayedArray(m1)
showtree(M1)
## By default, the tree of delayed operations carried by a DelayedArray
## object gets simplified each time a delayed operation is added to it.
## This can be disabled via a global option:
options(DelayedArray.simplify=FALSE)
M2 <- log(t(M1[5:1, c(TRUE, FALSE)] + 10))[-1, ]
showtree(M2) # linear tree
## Note that as part of the simplification process, some operations
## can be reordered:
options(DelayedArray.simplify=TRUE)
M2 <- log(t(M1[5:1, c(TRUE, FALSE)] + 10))[-1, ]
showtree(M2) # linear tree
options(DelayedArray.simplify=FALSE)
dimnames(M1) <- list(letters[1:15], LETTERS[1:10])
showtree(M1) # linear tree
m2 <- matrix(1:20, nrow=10)
Y <- cbind(t(M1[ , 10:1]), DelayedArray(m2), M1[6:15, "A", drop=FALSE])
showtree(Y) # non-linear tree
Z <- t(Y[10:1, ])[1:15, ] + 0.4 * M1
showtree(Z) # non-linear tree
Z@seed@seeds
Z@seed@seeds[[2]]@seed # reaching to M1
Z@seed@seeds[[1]]@seed@seed@seed@seed@seed # reaching to Y
## ---------------------------------------------------------------------
## isPristine()
## ---------------------------------------------------------------------
m <- matrix(1:20, ncol=4, dimnames=list(letters[1:5], NULL))
M <- DelayedArray(m)
isPristine(M) # TRUE
isPristine(log(M)) # FALSE
isPristine(M + 0) # FALSE
isPristine(t(M)) # FALSE
isPristine(t(t(M))) # TRUE
isPristine(cbind(M, M)) # FALSE
isPristine(cbind(M)) # TRUE
dimnames(M) <- NULL
isPristine(M) # FALSE
isPristine(M, ignore.dimnames=TRUE) # TRUE
isPristine(t(t(M)), ignore.dimnames=TRUE) # TRUE
isPristine(cbind(M, M), ignore.dimnames=TRUE) # FALSE
## ---------------------------------------------------------------------
## contentIsPristine()
## ---------------------------------------------------------------------
a <- array(1:40, c(4, 5, 2))
A <- DelayedArray(a)
stopifnot(contentIsPristine(A))
stopifnot(contentIsPristine(A[1, , ]))
stopifnot(contentIsPristine(t(A[1, , ])))
stopifnot(contentIsPristine(cbind(A[1, , ], A[2, , ])))
dimnames(A) <- list(LETTERS[1:4], letters[1:5], NULL)
stopifnot(contentIsPristine(A))
contentIsPristine(log(A)) # FALSE
contentIsPristine(A - 11:14) # FALSE
contentIsPristine(A * A) # FALSE
## ---------------------------------------------------------------------
## netSubsetAndAperm()
## ---------------------------------------------------------------------
a <- array(1:40, c(4, 5, 2))
M <- aperm(DelayedArray(a)[ , -1, ] / 100)[ , , 3] + 99:98
M
showtree(M)
netSubsetAndAperm(M) # 1st dimension was dropped, 2nd and 3rd
# dimension were permuted (transposition)
op2 <- netSubsetAndAperm(M, as.DelayedOp=TRUE)
op2 # 2 nested delayed operations
op1 <- op2@seed
class(op1) # DelayedSubset
class(op2) # DelayedAperm
op1@index
op2@perm
DelayedArray(op2) # same as M from a [, drop(), and aperm() point of
# view but the individual array elements are now
# reset to their original values i.e. to the values
# they have in the seed
stopifnot(contentIsPristine(DelayedArray(op2)))
## A simple function that returns TRUE if a DelayedArray object carries
## no "net subsetting" and no "net dimension rearrangement":
is_aligned_with_seed <- function(x)
{
if (nseed(x) != 1L)
return(FALSE)
op2 <- netSubsetAndAperm(x, as.DelayedOp=TRUE)
op1 <- op2@seed
is_noop(op1) && is_noop(op2)
}
M <- DelayedArray(a[ , , 1])
is_aligned_with_seed(log(M + 11:14) > 3) # TRUE
is_aligned_with_seed(M[4:1, ]) # FALSE
is_aligned_with_seed(M[4:1, ][4:1, ]) # TRUE
is_aligned_with_seed(t(M)) # FALSE
is_aligned_with_seed(t(t(M))) # TRUE
is_aligned_with_seed(t(0.5 * t(M[4:1, ])[ , 4:1])) # TRUE
options(DelayedArray.simplify=TRUE)
}
\keyword{methods}
|