1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
|
%\VignetteEngine{knitr::knitr}
%\VignetteIndexEntry{Working with large arrays in R}
%\VignetteDepends{knitr,Matrix,DelayedArray,HDF5Array,SummarizedExperiment,airway,lobstr}
% 2019-12-22: A temporary fix to avoid the following pdflatex error caused by
% an issue in LaTeX package filehook-scrlfile (used by beamer):
% ! Package filehook Error: Detected unknown definition of \InputIfFileExists.
% Use the 'force' option of 'filehook' to overwrite it..
% The error appeared on tokay2 in Dec 2019 after reinstalling MiKTeX 2.9.
% See comment by Phelype Oleinik here for the fix:
% https://tex.stackexchange.com/questions/512189/problem-with-chemmacros-beamer-and-filehook-scrlfile-sty
\PassOptionsToPackage{force}{filehook}
\documentclass[8pt]{beamer}
\mode<presentation> {
\usetheme{Madrid}
\usecolortheme{whale}
}
\usepackage{slides}
\renewcommand\Rclass[1]{{\texttt{#1}\index{#1 (class)}}}
\AtBeginSection[]
{
\begin{frame}<beamer>
\tableofcontents[currentsection]
\end{frame}
}
\title{Working with large arrays in R}
\subtitle{A look at HDF5Array/RleArray/DelayedArray objects}
\author{Herv\'e Pag\`es\\
\href{mailto:hpages.on.github@gmail.com}{hpages.on.github@gmail.com}}
\institute{Bioconductor conference\\Boston}
\date{July 2017}
\begin{document}
<<setup, include=FALSE>>=
library(knitr)
opts_chunk$set(size="scriptsize")
if (!dir.exists("~/mydata")) dir.create("~/mydata")
options(width=80)
library(Matrix)
library(DelayedArray)
library(HDF5Array)
library(SummarizedExperiment)
library(airway)
library(lobstr)
@
\maketitle
\frame{\tableofcontents}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Motivation and challenges}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[fragile]
\frametitle{Motivation and challenges}
R ordinary {\bf matrix} or {\bf array} is not suitable for big datasets:
\begin{block}{}
\begin{itemize}
\item 10x Genomics dataset (single cell experiment):
30,000 genes x 1.3 million cells = 36.5 billion values
\item in an ordinary integer matrix ==> 136G in memory!
\end{itemize}
\end{block}
\bigskip
Need for alternative containers:
\begin{block}{}
\begin{itemize}
\item but at the same time, the object should be (almost) as easy to
manipulate as an ordinary matrix or array
\item {\em standard R matrix/array API}: \Rcode{dim}, \Rcode{dimnames},
\Rcode{t}, \Rcode{is.na}, \Rcode{==}, \Rcode{+}, \Rcode{log},
\Rcode{cbind}, \Rcode{max}, \Rcode{sum}, \Rcode{colSums}, etc...
\item not limited to 2 dimensions ==> also support arrays of arbitrary
number of dimensions
\end{itemize}
\end{block}
\bigskip
2 approaches: {\bf in-memory data} vs {\bf on-disk data}
\end{frame}
\begin{frame}[fragile]
\frametitle{Motivation and challenges}
\centerline{\bf In-memory data}
\begin{block}{}
\begin{itemize}
\item a 30k x 1.3M matrix might still fit in memory if the data can
be efficiently compressed
\item example: sparse data (small percentage of nonzero values) ==>
{\em sparse representation} (storage of nonzero values only)
\item example: data with long runs of identical values ==> {\em RLE
compression (Run Length Encoding)}
\item choose the {\em smallest type} to store the values: \Rcode{raw}
(1 byte) < \Rcode{integer} (4 bytes) < \Rcode{double} (8 bytes)
\item if using {\em RLE compression}:
\begin{itemize}
\item choose the {\em best orientation} to store the values:
{\em by row} or {\em by column} (one might give better
compression than the other)
\item store the data by chunk ==> opportunity to pick up
{\em best type} and {\em best orientation} on a chunk
basis (instead of for the whole data)
\end{itemize}
\item size of 30k x 1.3M matrix in memory can be reduced from 136G
to 16G!
\end{itemize}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Motivation and challenges}
\centerline{\bf Examples of in-memory containers}
\bigskip
{\bf dgCMatrix} container from the \Biocpkg{Matrix} package:
\begin{block}{}
\begin{itemize}
\item sparse matrix representation
\item nonzero values stored as \Rcode{double}
\end{itemize}
\end{block}
\bigskip
{\bf RleArray} and {\bf RleMatrix} containers from the
\Biocpkg{DelayedArray} package:
\begin{block}{}
\begin{itemize}
\item use RLE compression
\item arbitrary number of dimensions
\item type of values: any R atomic type (\Rcode{integer},
\Rcode{double}, \Rcode{logical}, \Rcode{complex},
\Rcode{character}, and \Rcode{raw})
\end{itemize}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Motivation and challenges}
\centerline{\bf On-disk data}
\bigskip
However...
\begin{itemize}
\item if data is too big to fit in memory (even after compression) ==>
must use {\em on-disk representation}
\item challenge: should still be (almost) as easy to manipulate as
an ordinary matrix! ({\em standard R matrix/array API})
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Motivation and challenges}
\centerline{\bf Examples of on-disk containers}
\bigskip
Direct manipulation of an {\bf HDF5 dataset} via the
\Biocpkg{rhdf5} API. Low level API!
\bigskip
{\bf HDF5Array} and {\bf HDF5Matrix} containers from the
\Biocpkg{HDF5Array} package:
\begin{block}{}
Provide access to the HDF5 dataset via an API that mimics the standard
R matrix/array API
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Memory footprint}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[fragile]
\frametitle{Memory footprint}
\centerline{\bf The "airway" dataset}
\begin{columns}[t]
\begin{column}{0.36\textwidth}
\begin{exampleblock}{}
<<airway>>=
library(airway)
data(airway)
m <- unname(assay(airway))
dim(m)
typeof(m)
@
\end{exampleblock}
\end{column}
\begin{column}{0.52\textwidth}
\begin{exampleblock}{}
<<airway2>>=
head(m, n=4)
tail(m, n=4)
sum(m != 0) / length(m)
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{Memory footprint}
\centerline{{\bf dgCMatrix} vs {\bf RleMatrix} vs {\bf HDF5Matrix}}
\begin{columns}[t]
\begin{column}{0.60\textwidth}
\begin{exampleblock}{}
<<obj_size>>=
library(lobstr) # for obj_size()
obj_size(m)
library(Matrix)
obj_size(as(m, "dgCMatrix"))
library(DelayedArray)
obj_size(as(m, "RleMatrix"))
obj_size(as(t(m), "RleMatrix"))
library(HDF5Array)
obj_size(as(m, "HDF5Matrix"))
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{Memory footprint}
Some limitations of the sparse matrix implementation in the \Biocpkg{Matrix}
package:
\begin{block}{}
\begin{itemize}
\item nonzero values always stored as \Rcode{double}, the most memory
consuming type
\item number of nonzero values must be $< 2^{31}$
\item limited to 2 dimensions: no support for arrays of arbitrary number
of dimensions
\end{itemize}
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{RleArray and HDF5Array objects}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
RleMatrix/RleArray and HDF5Matrix/HDF5Array provide:
\begin{block}{}
\begin{itemize}
\item support all R atomic types
\item no limits in size (but each dimension must be $< 2^{31}$)
\item arbitrary number of dimensions
\end{itemize}
\end{block}
\bigskip
And also:
\begin{block}{}
\begin{itemize}
\item {\bf delayed operations}
\item {\bf block processing} (behind the scene)
\item TODO: multicore block processing (sequential only at the moment)
\end{itemize}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
\centerline{\bf Delayed operations}
\bigskip
\centerline{We start with HDF5Matrix object \Rcode{M}:}
\begin{columns}[t]
\begin{column}{0.60\textwidth}
\begin{exampleblock}{}
<<M>>=
M <- as(m, "HDF5Matrix")
M
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
Subsetting is delayed:
\begin{columns}[t]
\begin{column}{0.40\textwidth}
\begin{exampleblock}{}
<<M2>>=
M2 <- M[10:12, 1:5]
M2
@
\end{exampleblock}
\end{column}
\begin{column}{0.48\textwidth}
\begin{exampleblock}{}
<<seed_of_M2>>=
seed(M2)
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
Transposition is delayed:
\begin{columns}[t]
\begin{column}{0.40\textwidth}
\begin{exampleblock}{}
<<>>=
M3 <- t(M2)
M3
@
\end{exampleblock}
\end{column}
\begin{column}{0.48\textwidth}
\begin{exampleblock}{}
<<>>=
seed(M3)
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
\Rcode{cbind()} / \Rcode{rbind()} are delayed:
\begin{columns}[t]
\begin{column}{0.44\textwidth}
\begin{exampleblock}{}
<<>>=
M4 <- cbind(M3, M[1:5, 6:8])
M4
@
\end{exampleblock}
\end{column}
\begin{column}{0.44\textwidth}
\begin{exampleblock}{}
<<eval=FALSE>>=
seed(M4) # Error! (more than one seed)
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
All the operations in the following groups are delayed:
\begin{itemize}
\item \Rcode{Arith} (\Rcode{+}, \Rcode{-}, ...)
\item \Rcode{Compare} (\Rcode{==}, \Rcode{<}, ...)
\item \Rcode{Logic} (\Rcode{\&}, \Rcode{|})
\item \Rcode{Math} (\Rcode{log}, \Rcode{sqrt})
\item and more ...
\end{itemize}
\begin{columns}[t]
\begin{column}{0.42\textwidth}
\begin{exampleblock}{}
<<>>=
M5 <- M == 0
M5
@
\end{exampleblock}
\end{column}
\begin{column}{0.47\textwidth}
\begin{exampleblock}{}
<<>>=
seed(M5)
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
\begin{columns}[t]
\begin{column}{0.44\textwidth}
\begin{exampleblock}{}
<<>>=
M6 <- round(M[11:14, ] / M[1:4, ], digits=3)
M6
@
\end{exampleblock}
\end{column}
\begin{column}{0.44\textwidth}
\begin{exampleblock}{}
<<eval=FALSE>>=
seed(M6) # Error! (more than one seed)
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
\centerline{\bf Realization}
\bigskip
Delayed operations can be {\bf realized} by coercing the DelayedMatrix
object to HDF5Array:
\begin{columns}[t]
\begin{column}{0.40\textwidth}
\begin{exampleblock}{}
<<>>=
M6a <- as(M6, "HDF5Array")
M6a
@
\end{exampleblock}
\end{column}
\begin{column}{0.48\textwidth}
\begin{exampleblock}{}
<<>>=
seed(M6a)
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
\bigskip
... or by coercing it to RleArray:
\begin{columns}[t]
\begin{column}{0.44\textwidth}
\begin{exampleblock}{}
<<>>=
M6b <- as(M6, "RleArray")
M6b
@
\end{exampleblock}
\end{column}
\begin{column}{0.44\textwidth}
\begin{exampleblock}{}
<<>>=
seed(M6b)
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
\centerline{\bf Controlling where HDF5 datasets are realized}
\bigskip
{\em HDF5 dump management utilities}: a set of utilities to control where
HDF5 datasets are written to disk.
\begin{columns}[t]
\begin{column}{0.44\textwidth}
\begin{exampleblock}{}
<<>>=
setHDF5DumpFile("~/mydata/M6c.h5")
setHDF5DumpName("M6c")
M6c <- as(M6, "HDF5Array")
@
\end{exampleblock}
\end{column}
\begin{column}{0.44\textwidth}
\begin{exampleblock}{}
<<>>=
seed(M6c)
h5ls("~/mydata/M6c.h5")
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
\centerline{\Rcode{showHDF5DumpLog()}}
\begin{exampleblock}{}
<<>>=
showHDF5DumpLog()
@
\end{exampleblock}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
\centerline{\bf Block processing}
\bigskip
The following operations are NOT delayed. They are implemented via a
{\em block processing} mechanism that loads and processes one block
at a time:
\begin{itemize}
\item operations in the \Rcode{Summary} group (\Rcode{max}, \Rcode{min},
\Rcode{sum}, \Rcode{any}, \Rcode{all})
\item \Rcode{mean}
\item Matrix row/col summarization operations (\Rcode{col/rowSums},
\Rcode{col/rowMeans}, ...)
\item \Rcode{anyNA}, \Rcode{which}
\item \Rcode{apply}
\item and more ...
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{RleArray and HDF5Array objects}
\begin{columns}[t]
\begin{column}{0.75\textwidth}
\begin{exampleblock}{}
<<>>=
DelayedArray:::set_verbose_block_processing(TRUE)
colSums(M)
@
\end{exampleblock}
Control the block size:
\begin{exampleblock}{}
<<>>=
getAutoBlockSize()
setAutoBlockSize(1e6)
colSums(M)
@
\end{exampleblock}
\end{column}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Hands-on}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[fragile]
\frametitle{Hands-on}
\begin{block}{}
1. Load the "airway" dataset.
\end{block}
\begin{block}{}
2. It's wrapped in a SummarizedExperiment object. Get the count data as
an ordinary matrix.
\end{block}
\begin{block}{}
3. Wrap it in an HDF5Matrix object: (1) using \Rcode{writeHDF5Array()};
then (2) using coercion.
\end{block}
\begin{block}{}
4. When using coercion, where has the data been written on disk?
\end{block}
\begin{block}{}
5. See \Rcode{?setHDF5DumpFile} for how to control the location of
"automatic" HDF5 datasets. Try to control the destination of the
data when coercing.
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Hands-on}
\begin{block}{}
6. Use \Rcode{showHDF5DumpLog()} to see all the HDF5 datasets written to
disk during the current session.
\end{block}
\bigskip
\begin{block}{}
7. Try some operations on the HDF5Matrix object: (1) some delayed ones;
(2) some non-delayed ones (block processing).
\end{block}
\bigskip
\begin{block}{}
8. Use \Rcode{DelayedArray:::set\_verbose\_block\_processing(TRUE)}
to see block processing in action.
\end{block}
\bigskip
\begin{block}{}
9. Control the block size with \Rcode{setAutoBlockSize()}.
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Hands-on}
\begin{block}{}
10. Stick the HDF5Matrix object back in the SummarizedExperiment object.
The resulting object is an "HDF5-backed SummarizedExperiment object".
\end{block}
\bigskip
\begin{block}{}
11. The HDF5-backed SummarizedExperiment object can be manipulated
(almost) like an in-memory SummarizedExperiment object.
Try \Rcode{[}, \Rcode{cbind}, \Rcode{rbind} on it.
\end{block}
\bigskip
\begin{block}{}
12. The \Biocpkg{SummarizedExperiment} package provides
\Rcode{saveHDF5SummarizedExperiment} to save a SummarizedExperiment
object (HDF5-backed or not) as an HDF5-backed SummarizedExperiment
object. Try it.
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{DelayedArray/HDF5Array: Future developments}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[fragile]
\frametitle{Future developments}
\centerline{\bf Block processing improvements}
\begin{block}{}
Block genometry: (1) better by default, (2) let the user have more
control on it
\end{block}
\begin{block}{}
Support multicore
\end{block}
\begin{block}{}
Expose it: \Rcode{blockApply()}
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Future developments}
\centerline{\bf HDF5Array improvements}
\begin{block}{}
Store the \Rcode{dimnames} in the HDF5 file (in {\em HDF5 Dimension Scale
datasets} - \url{https://www.hdfgroup.org/HDF5/Tutor/h5dimscale.html})
\end{block}
\begin{block}{}
Use better automatic chunk geometry when realizing an HDF5Array object
\end{block}
\begin{block}{}
Block processing should take advantage of the chunk geometry (e.g.
\Rcode{realize()} should use blocks that are clusters of chunks)
\end{block}
\begin{block}{}
Unfortunately: not possible to support multicore realization at the
moment (HDF5 does not support concurrent writing to a dataset yet)
\end{block}
\end{frame}
\begin{frame}[fragile]
\frametitle{Future developments}
\centerline{\bf RleArray improvements}
\begin{block}{}
Let the user have more control on the chunk geometry when
constructing/realizing an RleArray object
\end{block}
\begin{block}{}
Like for HDF5Array objects, block processing should take advantage
of the chunk geometry
\end{block}
\begin{block}{}
Support multicore realization
\end{block}
\begin{block}{}
Provide C/C++ low-level API for direct row/column access from C/C++ code
(e.g. from the \Biocpkg{beachmat} package)
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
<<cleanup, include=FALSE>>=
setHDF5DumpFile()
unlink("~/mydata", recursive=TRUE, force=TRUE)
@
\end{document}
|