1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
|
### =========================================================================
### DelayedMatrix %*%, crossprod(), and tcrossprod()
### -------------------------------------------------------------------------
###
### The %*%, crossprod(), and tcrossprod() methods for DelayedMatrix objects
### are block processed.
###
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Helpers for BLOCK_mult_Lgrid() and BLOCK_mult_Rgrid()
###
.make_shared_sink_and_grid_for_Lgrid_apply <-
function(x, y, transpose.x, transpose.y, Lgrid, BPPARAM, BACKEND, ...)
{
if (transpose.x) {
input_grid <- t(Lgrid)
sink_rownames <- colnames(x)
} else {
input_grid <- Lgrid
sink_rownames <- rownames(x)
}
if (transpose.y) {
sink_ncol <- nrow(y)
sink_colnames <- rownames(y)
} else {
sink_ncol <- ncol(y)
sink_colnames <- colnames(y)
}
make_shared_sink_and_grid_along_hstrips(BPPARAM,
input_grid, sink_ncol,
BACKEND, sink_rownames, sink_colnames, ...)
}
.make_shared_sink_and_grid_for_Rgrid_apply <-
function(x, y, transpose.x, transpose.y, Rgrid, BPPARAM, BACKEND, ...)
{
if (transpose.y) {
input_grid <- t(Rgrid)
sink_colnames <- rownames(y)
} else {
input_grid <- Rgrid
sink_colnames <- colnames(y)
}
if (transpose.x) {
sink_nrow <- ncol(x)
sink_rownames <- colnames(x)
} else {
sink_nrow <- nrow(x)
sink_rownames <- rownames(x)
}
make_shared_sink_and_grid_along_vstrips(BPPARAM,
input_grid, sink_nrow,
BACKEND, sink_rownames, sink_colnames, ...)
}
### x, y: "big" and "small" operands, respectively (see BLOCK_mult_Lgrid()
### below for the details).
### INIT, BLOCK_OP: callback functions.
### INIT() must take 3 arguments: i (or j), grid, y.
### BLOCK_OP() must take 3 arguments: x_block, y, vp_ranges.
### See BLOCK_mult_Lgrid() below for the other arguments.
### Walks on the "left grid" which is defined on matrix-like object 'x'.
.Lgrid_apply <- function(x, y, transpose.x, transpose.y,
Lgrid, as.sparse, BPPARAM, verbose,
INIT, BLOCK_OP, BACKEND, ..., dry.run)
{
verbose <- normarg_verbose(verbose)
if (transpose.x) {
Lgrid <- best_grid_for_vstrip_apply(x, Lgrid)
ans_nrow <- ncol(x)
} else {
Lgrid <- best_grid_for_hstrip_apply(x, Lgrid)
ans_nrow <- nrow(x)
}
ans_ncol <- if (transpose.y) nrow(y) else ncol(y)
ans_dim <- c(ans_nrow, ans_ncol)
## --- define FINAL() ---
if (is.null(BACKEND)) {
if (dry.run)
return(list(class="matrix", dim=ans_dim, type="double"))
if (verbose) {
FINAL <- if (transpose.x) final_vstrip_noop else final_hstrip_noop
} else {
FINAL <- NULL
}
FINAL_MoreArgs <- list()
} else {
## The "shared sink" route consists in using a single realization sink
## shared across all strips. Can we take this route?
## .make_shared_sink_and_grid_for_Lgrid_apply() will figure it out and
## return a RealizationSink + its associated grid in a named list if
## it turns out that we can take the "shared sink" route, or NULL if
## we can't.
sink_and_grid <- .make_shared_sink_and_grid_for_Lgrid_apply(x, y,
transpose.x, transpose.y,
Lgrid, BPPARAM, BACKEND, ...)
if (is.null(sink_and_grid)) {
if (dry.run) {
nseed <- if (transpose.x) ncol(Lgrid) else nrow(Lgrid)
return(list(class="DelayedMatrix", dim=ans_dim, type="double",
nseed=nseed))
}
FINAL <- function(init, i, grid, BACKEND, verbose) {
realize_matrix(init, BACKEND, verbose)
}
FINAL_MoreArgs <- list(BACKEND=BACKEND, verbose=verbose)
} else {
## "shared sink" route.
if (dry.run)
return(list(class=BACKEND, dim=ans_dim, type="double",
nseed=1L))
FINAL <- function(init, i, grid, sink, sink_grid, verbose) {
write_full_sink_rows(sink, sink_grid, i, init, verbose)
}
FINAL_MoreArgs <- c(sink_and_grid, list(verbose=verbose))
}
}
## --- define FUN() ---
FUN <- function(init, block, y, BLOCK_OP) {
## 'block' is either an ordinary matrix or SVT_SparseMatrix object.
vp <- currentViewport()
block_ans <- BLOCK_OP(block, y, ranges(vp))
if (!is.matrix(block_ans))
block_ans <- as.matrix(block_ans)
init + block_ans
}
FUN_MoreArgs <- list(y=y, BLOCK_OP=BLOCK_OP)
## --- block processing ---
STRIP_APPLY <- if (transpose.x) vstrip_apply else hstrip_apply
INIT_MoreArgs <- list(y=y)
strip_results <- STRIP_APPLY(x, INIT, INIT_MoreArgs,
FUN, FUN_MoreArgs,
FINAL, FINAL_MoreArgs,
grid=Lgrid, as.sparse=as.sparse,
BPPARAM=BPPARAM, verbose=verbose)
## --- turn output of block processing into object and return it ---
if (is.null(BACKEND) || is.null(sink_and_grid)) {
combine_strip_results("rbind", strip_results, verbose)
} else {
## "shared sink" route.
shared_sink_as_DelayedArray(sink_and_grid$sink, verbose)
}
}
### x, y: "small" and "big" operands, respectively (see BLOCK_mult_Rgrid()
### below for the details).
### INIT, BLOCK_OP: callback functions.
### INIT() must take 3 arguments: j (or i), grid, x.
### BLOCK_OP() must take 3 arguments: x, y_block, vp_ranges.
### See BLOCK_mult_Rgrid() below for the other arguments.
### Walks on the "right grid" which is defined on matrix-like object 'y'.
.Rgrid_apply <- function(x, y, transpose.x, transpose.y,
Rgrid, as.sparse, BPPARAM, verbose,
INIT, BLOCK_OP, BACKEND, ..., dry.run)
{
verbose <- normarg_verbose(verbose)
if (transpose.y) {
Rgrid <- best_grid_for_hstrip_apply(y, Rgrid)
ans_ncol <- nrow(y)
} else {
Rgrid <- best_grid_for_vstrip_apply(y, Rgrid)
ans_ncol <- ncol(y)
}
ans_nrow <- if (transpose.x) ncol(x) else nrow(x)
ans_dim <- c(ans_nrow, ans_ncol)
## --- define FINAL() ---
if (is.null(BACKEND)) {
if (dry.run)
return(list(class="matrix", dim=ans_dim, type="double"))
if (verbose) {
FINAL <- if (transpose.y) final_hstrip_noop else final_vstrip_noop
} else {
FINAL <- NULL
}
FINAL_MoreArgs <- list()
} else {
## The "shared sink" route consists in using a single realization sink
## shared across all strips. Can we take this route?
## .make_shared_sink_and_grid_for_Rgrid_apply() will figure it out and
## return a RealizationSink + its associated grid in a named list if
## it turns out that we can take the "shared sink" route, or NULL if
## we can't.
sink_and_grid <- .make_shared_sink_and_grid_for_Rgrid_apply(x, y,
transpose.x, transpose.y,
Rgrid, BPPARAM, BACKEND, ...)
if (is.null(sink_and_grid)) {
if (dry.run) {
nseed <- if (transpose.y) nrow(Rgrid) else ncol(Rgrid)
return(list(class="DelayedMatrix", dim=ans_dim, type="double",
nseed=nseed))
}
FINAL <- function(init, j, grid, BACKEND, verbose) {
realize_matrix(init, BACKEND=BACKEND, verbose)
}
FINAL_MoreArgs <- list(BACKEND=BACKEND, verbose=verbose)
} else {
## "shared sink" route.
if (dry.run)
return(list(class=BACKEND, dim=ans_dim, type="double",
nseed=1L))
FINAL <- function(init, j, grid, sink, sink_grid, verbose) {
write_full_sink_cols(sink, sink_grid, j, init, verbose)
}
FINAL_MoreArgs <- c(sink_and_grid, list(verbose=verbose))
}
}
## --- define FUN() ---
FUN <- function(init, block, x, BLOCK_OP) {
## 'block' is either an ordinary matrix or SVT_SparseMatrix object.
vp <- currentViewport()
block_ans <- BLOCK_OP(x, block, ranges(vp))
if (!is.matrix(block_ans))
block_ans <- as.matrix(block_ans)
init + block_ans
}
FUN_MoreArgs <- list(x=x, BLOCK_OP=BLOCK_OP)
## --- block processing ---
STRIP_APPLY <- if (transpose.y) hstrip_apply else vstrip_apply
INIT_MoreArgs <- list(x=x)
strip_results <- STRIP_APPLY(y, INIT, INIT_MoreArgs,
FUN, FUN_MoreArgs,
FINAL, FINAL_MoreArgs,
grid=Rgrid, as.sparse=as.sparse,
BPPARAM=BPPARAM, verbose=verbose)
## --- turn output of block processing into object and return it ---
if (is.null(BACKEND) || is.null(sink_and_grid)) {
combine_strip_results("cbind", strip_results, verbose)
} else {
## "shared sink" route.
shared_sink_as_DelayedArray(sink_and_grid$sink, verbose)
}
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### BLOCK_mult_Lgrid() and BLOCK_mult_Rgrid()
###
### These are the 2 workhorses behind block matrix multiplication between
### a "big" and a "small" matrix-like object. See BLOCK_mult_Lgrid() and
### BLOCK_mult_Rgrid() below for the details.
###
### Should be able to handle any type() supported by base::`%*%`, that is,
### integer, double, and complex. However, the realization backend specified
### via `BACKEND` might introduce some restrictions e.g. will it support
### realization of a matrix of type complex?
###
### We need to make sure to return a matrix-like object that supports [ as
### well as native %*%, crossprod(), and tcrossprod() with the blocks returned
### by read_block() (which are either ordinary matrices or SparseMatrix
### derivatives).
### See the BLOCK_OP() callback functions defined and used in
### BLOCK_mult_Lgrid() and BLOCK_mult_Rgrid() below for what operations will
### effectively be performed on the "small operand".
.normalize_small_operand <- function(x, argname)
{
if (is(x, "COO_SparseMatrix"))
return(as(x, "SVT_SparseMatrix"))
if (is.matrix(x) || is(x, "sparseMatrix") || is(x, "SparseMatrix"))
return(x)
stop(wmsg("this operation does not support '", argname, "' ",
"of class ", class(x)[[1L]]))
}
### x: A matrix-like object (typically a DelayedMatrix) on which a grid will
### be defined and from which blocks will get extracted. This will typically
### be the biggest of the two operands of the binary matrix operation.
### y: Typically an ordinary matrix or SVT_SparseMatrix object but other
### matrix-like objects are supported (see .normalize_small_operand() above).
### This will typically be the smallest of the two operands of the binary
### matrix operation.
### Lgrid: An array grid (ArrayGrid object) defined on 'x'.
### Walks on the matrix blocks defined by 'Lgrid'.
### If 'BACKEND' is NULL, returns an ordinary matrix. Otherwise, returns
### a DelayedMatrix object that is either pristine or the result of rbind'ing
### several pristine DelayedMatrix objects together (delayed rbind()).
### Calling nseed() on the returned object will return 1 in the pristine case
### or the number of objects bound together in the non-pristine case. In the
### pristine case, arguments specified thru the ellipsis will be passed to the
### RealizationSink constructor associated with 'BACKEND'. Note that the first
### 3 arguments of **any** RealizationSink constructor are guaranteed to
### be 'dim', 'dimnames', and 'type', and the arguments specified thru the
### ellipsis here can not be any of these. 'as.sparse' is not allowed either.
BLOCK_mult_Lgrid <- function(x, y, Lgrid=NULL, as.sparse=NA,
BPPARAM=getAutoBPPARAM(), verbose=NA,
op=c("mult", "crossprod", "tcrossprod"),
BACKEND=getAutoRealizationBackend(), ...,
dry.run=FALSE)
{
stopifnot(length(dim(x)) == 2L)
y <- .normalize_small_operand(y, argname="y")
op <- match.arg(op)
transpose.x <- transpose.y <- FALSE
## All INIT() callback functions must return a matrix of type "double"
## rather than "integer". This is to avoid integer overflows during the
## within-strip walks.
switch(op,
mult={
stopifnot(ncol(x) == nrow(y))
INIT <- function(i, grid, y) {
matrix(0.0, nrow=nrow(grid[[i, 1L]]), ncol=ncol(y))
}
BLOCK_OP <- function(x_block, y, vp_ranges) {
idx <- (start(vp_ranges)[[2L]]):(end(vp_ranges)[[2L]])
base::`%*%`(x_block, y[idx, , drop=FALSE])
}
},
crossprod={
transpose.x <- TRUE
stopifnot(nrow(x) == nrow(y))
INIT <- function(j, grid, y) {
matrix(0.0, nrow=ncol(grid[[1L, j]]), ncol=ncol(y))
}
BLOCK_OP <- function(x_block, y, vp_ranges) {
idx <- (start(vp_ranges)[[1L]]):(end(vp_ranges)[[1L]])
base::crossprod(x_block, y[idx, , drop=FALSE])
}
},
tcrossprod={
transpose.y <- TRUE
stopifnot(ncol(x) == ncol(y))
INIT <- function(i, grid, y) {
matrix(0.0, nrow=nrow(grid[[i, 1L]]), ncol=nrow(y))
}
BLOCK_OP <- function(x_block, y, vp_ranges) {
idx <- (start(vp_ranges)[[2L]]):(end(vp_ranges)[[2L]])
base::tcrossprod(x_block, y[ , idx, drop=FALSE])
}
},
stop(wmsg("invalid 'op'")) # should never happen
)
.Lgrid_apply(x, y, transpose.x, transpose.y,
Lgrid, as.sparse, BPPARAM, verbose,
INIT, BLOCK_OP, BACKEND, ..., dry.run=dry.run)
}
### x: Typically an ordinary matrix or SVT_SparseMatrix object but other
### matrix-like objects are supported (see .normalize_small_operand() above).
### This will typically be the smallest of the two operands of the binary
### matrix operation.
### y: A matrix-like object (typically a DelayedMatrix) on which a grid will
### be defined and from which blocks will get extracted. This will typically
### be the biggest of the two operands of the binary matrix operation.
### Rgrid: An array grid (ArrayGrid object) defined on 'y'.
### Walks on the matrix blocks defined by 'Rgrid'.
### If 'BACKEND' is NULL, returns an ordinary matrix. Otherwise, returns
### a DelayedMatrix object that is either pristine or the result of cbind'ing
### several pristine DelayedMatrix objects together (delayed cbind()).
### See BLOCK_mult_Lgrid() above for what arguments can be specified thru the
### ellipsis.
BLOCK_mult_Rgrid <- function(x, y, Rgrid=NULL, as.sparse=NA,
BPPARAM=getAutoBPPARAM(), verbose=NA,
op=c("mult", "crossprod", "tcrossprod"),
BACKEND=getAutoRealizationBackend(), ...,
dry.run=FALSE)
{
stopifnot(length(dim(y)) == 2L)
x <- .normalize_small_operand(x, argname="x")
op <- match.arg(op)
transpose.x <- transpose.y <- FALSE
## All INIT() callback functions must return a matrix of type "double"
## rather than "integer". This is to avoid integer overflows during the
## within-strip walks.
switch(op,
mult={
stopifnot(ncol(x) == nrow(y))
INIT <- function(j, grid, x) {
matrix(0.0, nrow=nrow(x), ncol=ncol(grid[[1L, j]]))
}
BLOCK_OP <- function(x, y_block, vp_ranges) {
idx <- (start(vp_ranges)[[1L]]):(end(vp_ranges)[[1L]])
base::`%*%`(x[ , idx, drop=FALSE], y_block)
}
},
crossprod={
transpose.x <- TRUE
stopifnot(nrow(x) == nrow(y))
INIT <- function(j, grid, x) {
matrix(0.0, nrow=ncol(x), ncol=ncol(grid[[1L, j]]))
}
BLOCK_OP <- function(x, y_block, vp_ranges) {
idx <- (start(vp_ranges)[[1L]]):(end(vp_ranges)[[1L]])
base::crossprod(x[idx, , drop=FALSE], y_block)
}
},
tcrossprod={
transpose.y <- TRUE
stopifnot(ncol(x) == ncol(y))
INIT <- function(i, grid, x) {
matrix(0.0, nrow=nrow(x), ncol=nrow(grid[[i, 1L]]))
}
BLOCK_OP <- function(x, y_block, vp_ranges) {
idx <- (start(vp_ranges)[[2L]]):(end(vp_ranges)[[2L]])
base::tcrossprod(x[ , idx, drop=FALSE], y_block)
}
},
stop(wmsg("invalid 'op'")) # should never happen
)
.Rgrid_apply(x, y, transpose.x, transpose.y,
Rgrid, as.sparse, BPPARAM, verbose,
INIT, BLOCK_OP, BACKEND, ..., dry.run=dry.run)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### %*%, crossprod(), and tcrossprod() methods between:
### - a DelayedMatrix object,
### - an ordinary matrix or vector (or other supported matrix-like
### object, see .normalize_small_operand() above)
###
setMethod("%*%", c("DelayedMatrix", "ANY"),
function(x, y)
{
if (is.atomic(y) && is.vector(y)) {
## Returns a 1-col ordinary matrix (like base::`%*%` does).
y <- cbind(y, deparse.level=0)
BLOCK_mult_Lgrid(x, y, BACKEND=NULL)
} else {
BLOCK_mult_Lgrid(x, y)
}
}
)
setMethod("%*%", c("ANY", "DelayedMatrix"),
function(x, y)
{
if (is.atomic(x) && is.vector(x)) {
## Returns a 1-row ordinary matrix (like base::`%*%` does).
x <- rbind(x, deparse.level=0)
BLOCK_mult_Rgrid(x, y, BACKEND=NULL)
} else {
BLOCK_mult_Rgrid(x, y)
}
}
)
setMethod("crossprod", c("DelayedMatrix", "ANY"),
function(x, y)
{
if (is.atomic(y) && is.vector(y)) {
## Returns a 1-col ordinary matrix (like base::crossprod() does).
y <- cbind(y, deparse.level=0)
BLOCK_mult_Lgrid(x, y, BACKEND=NULL, op="crossprod")
} else {
BLOCK_mult_Lgrid(x, y, op="crossprod")
}
}
)
setMethod("crossprod", c("ANY", "DelayedMatrix"),
function(x, y)
{
if (is.atomic(x) && is.vector(x)) {
## Returns a 1-row ordinary matrix (like base::crossprod() does).
x <- cbind(x, deparse.level=0)
BLOCK_mult_Rgrid(x, y, BACKEND=NULL, op="crossprod")
} else {
BLOCK_mult_Rgrid(x, y, op="crossprod")
}
}
)
setMethod("tcrossprod", c("DelayedMatrix", "ANY"),
function(x, y)
{
if (is.atomic(y) && is.vector(y)) {
## Note that base::tcrossprod() does not work with a vector on
## the right!
## Returns a 1-col ordinary matrix (like base::tcrossprod() would
## probably do if it were supporting a vector on the right).
y <- rbind(y, deparse.level=0)
BLOCK_mult_Lgrid(x, y, BACKEND=NULL, op="tcrossprod")
} else {
BLOCK_mult_Lgrid(x, y, op="tcrossprod")
}
}
)
setMethod("tcrossprod", c("ANY", "DelayedMatrix"),
function(x, y)
{
if (is.atomic(x) && is.vector(x)) {
## Returns a 1-row ordinary matrix (like base::tcrossprod() does).
x <- rbind(x, deparse.level=0)
BLOCK_mult_Rgrid(x, y, BACKEND=NULL, op="tcrossprod")
} else {
BLOCK_mult_Rgrid(x, y, op="tcrossprod")
}
}
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Parallelized schemes for matrix multiplication.
###
### by Aaron Lun
###
### This splits one or both matrices into blocks according to the
### desired parallelization scheme, and distributes them to workers.
### This also requires care to respect the maximum block size.
###
.grid_by_dimension <- function(x, nworkers)
# Splits a dimension of the matrix into at least 'nworkers' blocks.
# If the block size is too large, it is reduced to obtain the desired
# number of blocks in order for parallelization to be effective.
{
old <- getAutoBlockLength(type(x))
ideal_size_by_row <- max(1, ceiling(nrow(x)/nworkers) * ncol(x))
if (old > ideal_size_by_row) {
row_grid <- rowAutoGrid(x, block.length=ideal_size_by_row)
} else {
row_grid <- rowAutoGrid(x)
}
ideal_size_by_col <- max(1, ceiling(ncol(x)/nworkers) * nrow(x))
if (old > ideal_size_by_col) {
col_grid <- colAutoGrid(x, block.length=ideal_size_by_col)
} else {
col_grid <- colAutoGrid(x)
}
list(row=row_grid, col=col_grid)
}
.left_mult <- function(bid, grid, x, y, MULT) {
# this, and all other calls, had better yield a non-DA, otherwise MULT will recurse endlessly.
block <- read_block(x, grid[[bid]])
MULT(block, y)
}
.right_mult <- function(bid, grid, x, y, MULT) {
block <- read_block(y, grid[[bid]])
MULT(x, block)
}
.super_BLOCK_mult <- function(x, y, MULT, transposed.x=FALSE, transposed.y=FALSE, BPPARAM=getAutoBPPARAM())
# Controller function that split jobs for a multiplication function "MULT".
# This accommodates %*%, crossprod and tcrossprod for two arguments.
{
if (is.null(BPPARAM)) {
nworkers <- 1L
} else {
nworkers <- BiocParallel::bpnworkers(BPPARAM)
}
# Choosing the right dimension to iterate over, depending on MULT.
x_grid <- .grid_by_dimension(x, nworkers)
if (transposed.x) {
x_grid <- x_grid$col
} else {
x_grid <- x_grid$row
}
y_grid <- .grid_by_dimension(y, nworkers)
if (transposed.y) {
y_grid <- y_grid$row
} else {
y_grid <- y_grid$col
}
# Always iterating over the 'larger' matrix, to better split up the work.
# In the context of file-backed matrices, this operates under the heuristic
# that the larger matrix is the file-backed one.
if (length(x) > length(y)) {
chosen_scheme <- "x"
} else {
chosen_scheme <- "y"
}
# Switch to iteration over the other argument if the chosen one is
# single-block and non-DA (at which point you might as well iterate
# over the other argument anyway). This avoids infinite recursion
# when 'x' or 'y' fail to get realized via read_block().
if (chosen_scheme=="x" && length(x_grid)==1L && !is(x, "DelayedMatrix")) {
chosen_scheme <- "y"
} else if (chosen_scheme=="y" && length(y_grid)==1L && !is(y, "DelayedMatrix")) {
chosen_scheme <- "x"
}
old <- getAutoBPPARAM()
on.exit(setAutoBPPARAM(old))
setAutoBPPARAM(NULL) # Avoid re-parallelizing in further calls to 'MULT'.
if (chosen_scheme=="x") {
out <- S4Arrays:::bplapply2(seq_len(length(x_grid)),
FUN=.left_mult,
x=x, y=y, grid=x_grid,
MULT=MULT,
BPPARAM=BPPARAM)
ans <- do.call(rbind, out)
} else if (chosen_scheme=="y") {
out <- S4Arrays:::bplapply2(seq_len(length(y_grid)),
FUN=.right_mult,
x=x, y=y, grid=y_grid,
MULT=MULT,
BPPARAM=BPPARAM)
ans <- do.call(cbind, out)
}
realize(ans)
}
setMethod("%*%", c("DelayedMatrix", "DelayedMatrix"), function(x, y) .super_BLOCK_mult(x, y, MULT=`%*%`))
setMethod("crossprod", c("DelayedMatrix", "DelayedMatrix"), function(x, y)
.super_BLOCK_mult(x, y, MULT=crossprod, transposed.x=TRUE)
)
setMethod("tcrossprod", c("DelayedMatrix", "DelayedMatrix"), function(x, y)
.super_BLOCK_mult(x, y, MULT=tcrossprod, transposed.y=TRUE)
)
.solo_mult <- function(bid, grid, x, MULT) {
block <- read_block(x, grid[[bid]])
MULT(block)
}
.super_BLOCK_self <- function(x, MULT, transposed=FALSE, BPPARAM=getAutoBPPARAM())
# Controller function that split jobs for a multiplication function "MULT".
# This accommodates crossprod and tcrossprod for single arguments.
{
if (is.null(BPPARAM)) {
nworkers <- 1L
} else {
nworkers <- BiocParallel::bpnworkers(BPPARAM)
}
# Choosing the right dimension to iterate over, depending on MULT.
grid <- .grid_by_dimension(x, nworkers)
if (transposed) {
fast <- grid$col
slow <- grid$row
} else {
fast <- grid$row
slow <- grid$col
}
old <- getAutoBPPARAM()
on.exit(setAutoBPPARAM(old))
setAutoBPPARAM(NULL) # Avoid re-parallelizing in further calls to 'MULT'.
if (getAutoMultParallelAgnostic()) {
out <- S4Arrays:::bplapply2(seq_len(length(slow)),
FUN=.left_mult,
x=x, y=x, grid=slow,
MULT=MULT,
BPPARAM=BPPARAM)
ans <- do.call(rbind, out)
} else {
ans <- S4Arrays:::bplapply2(seq_len(length(fast)),
FUN=.solo_mult,
x=x, grid=fast,
MULT=MULT,
BPPARAM=BPPARAM)
ans <- Reduce("+", ans)
}
DelayedArray(realize(ans))
}
setMethod("crossprod", c("DelayedMatrix", "missing"), function(x, y)
.super_BLOCK_self(x, MULT=crossprod)
)
setMethod("tcrossprod", c("DelayedMatrix", "missing"), function(x, y)
.super_BLOCK_self(x, MULT=tcrossprod, transposed=TRUE)
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### User-visible global settings for parallelized matrix multiplication.
###
### by Aaron Lun
###
### This allows the user to specify whether or not they want to guarantee
### the identical matrix products regardless of the number of workers.
### This is because splitting by the common dimension does not preserve the
### order of addition operations, which changes the output due to numerical
### imprecision in the inner products of each vector.
###
setAutoMultParallelAgnostic <- function(agnostic=TRUE) {
S4Arrays:::set_user_option("auto.mult.parallel.agnostic", agnostic)
}
getAutoMultParallelAgnostic <- function() {
S4Arrays:::get_user_option("auto.mult.parallel.agnostic")
}
|