1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
### ===========================================================================
### EXAMPLE 1
### On the importance of acknowledging the geometry of physical chunks
library(DelayedArray)
library(HDF5Array)
super_BLOCK_mult <- DelayedArray:::.super_BLOCK_mult
BLOCK_mult_Lgrid <- DelayedArray:::BLOCK_mult_Lgrid
BLOCK_mult_Rgrid <- DelayedArray:::BLOCK_mult_Rgrid
set.seed(2009)
m1 <- matrix(runif(15e6), ncol=1000) # 15000 x 1000
m2 <- matrix(runif(4000), nrow=1000) # 1000 x 4
#M1 <- writeTENxMatrix(m1, "M1.h5", group="M1")
M1 <- TENxMatrix("M1.h5", group="M1") # column oriented!
M2 <- writeTENxMatrix(m2)
m0 <- m1 %*% m2
setAutoBlockSize(1e6)
## m1 %*% m2
res1 <- super_BLOCK_mult(m1, m2, MULT=`%*%`)
stopifnot(identical(as.matrix(res1), m0))
res2 <- BLOCK_mult_Lgrid(m1, m2)
stopifnot(all.equal(res2, m0))
## M1 %*% m2
res3 <- super_BLOCK_mult(M1, m2, MULT=`%*%`) # 120 s
stopifnot(identical(as.matrix(res3), m0))
res4 <- BLOCK_mult_Lgrid(M1, m2) # 1.58 s
stopifnot(all.equal(res4, m0))
### The difference lies in how super_BLOCK_mult() and
### BLOCK_mult_Lgrid() walk on M1. The former
### walks on blocks made of full rows while the latter walks on
### blocks made of full cols. For a TENxMatrix object like M1,
### loading a full row is bad because it actually loads the entire
### dataset in memory. This means that, for each block that it processes,
### super_BLOCK_mult() will load the entire dataset in memory!
## m1 %*% M2
res5 <- super_BLOCK_mult(m1, M2, MULT=`%*%`)
stopifnot(identical(as.matrix(res5), m0))
res6 <- BLOCK_mult_Rgrid(m1, M2)
stopifnot(all.equal(res6, m0))
### ===========================================================================
### EXAMPLE 2
### With a subset of the 1.3 Million Brain Cell Dataset
library(HDF5Array)
DelayedArray:::set_verbose_block_processing(TRUE)
library(ExperimentHub)
hub <- ExperimentHub()
tenx <- TENxMatrix(hub[["EH1039"]], group="mm10")
### 12.5k cols:
M <- tenx[ , 1:12500]
set.seed(2009)
m <- cbind(runif(ncol(M)), runif(ncol(M)))
system.time(res <- M %*% m) # 4.3s / 1.1Gb (was 32s / 2.1Gb)
### 25k cols:
M <- tenx[ , 1:25000]
set.seed(2009)
m <- cbind(runif(ncol(M)), runif(ncol(M)))
system.time(res <- M %*% m) # 7.6s / 1.1Gb (was 110s / 3.1Gb)
### 50k cols:
M <- tenx[ , 1:50000]
set.seed(2009)
m <- cbind(runif(ncol(M)), runif(ncol(M)))
system.time(res <- M %*% m) # 13.4s / 1.1Gb (was 495s / 5.6Gb)
### 100k cols:
M <- tenx[ , 1:100000]
set.seed(2009)
m <- cbind(runif(ncol(M)), runif(ncol(M)))
system.time(res <- M %*% m) # 24s / 1.2Gg (was 2409s / 9.1Gb)
### ===========================================================================
### EXAMPLE 3
library(HDF5Array)
library(ExperimentHub)
hub <- ExperimentHub()
M <- TENxMatrix(hub[["EH1039"]], group="mm10") # 1.3 Million Brain Cell Dataset
### Find Singular Values with RSpectra::svds() (note that one would
### typically log-normalize the data before doing this but we're skipping
### that step here to keep things as simple as possible):
library(RSpectra)
#DelayedArray:::set_verbose_block_processing(TRUE)
system.time(row_means <- rowMeans(M)) # 368s / 1.2Gb
Ax <- function(x, args) {M %*% x - row_means * sum(x)}
Atx <- function(x, args) {x %*% M - as.vector(row_means %*% x)}
### Will take a while, but memory usage will stay under 2Gb!
svd <- RSpectra::svds(Ax, Atrans=Atx, k=2, dim=dim(M))
### ===========================================================================
### EXAMPLE 4
library(DelayedArray)
library(HDF5Array)
super_BLOCK_mult <- DelayedArray:::.super_BLOCK_mult
BLOCK_mult_Lgrid <- DelayedArray:::BLOCK_mult_Lgrid
DelayedArray:::set_verbose_block_processing(TRUE)
#setAutoBlockSize(1e6)
setAutoBlockSize(1e7)
setAutoBPPARAM(BiocParallel::SnowParam(2))
set.seed(2009)
m3 <- matrix(runif(21e6), ncol=600) # 35000 x 600
set.seed(1972)
m4 <- matrix(runif(9e6), nrow=600) # 600 x 15000
#M3 <- writeHDF5Array(m3, "M3.h5", name="M3", chunkdim=c(50, 50))
#M3 <- HDF5Array("M3.h5", name="M3")
#m34 <- m3 %*% m4 # 168s / 4.5g
## m3 %*% m4
res1 <- super_BLOCK_mult(m3, m4, MULT=`%*%`)
# block size = 1e6 -> 113s / 8.5g
# block size = 1e7 -> 107s / 8.4g
# block size = 1e7; SnowParam(2) -> 73s / 8.5g
# block size = 1e7; SnowParam(4) -> 62s / 8.5g (4 workers used 11g!)
stopifnot(identical(as.matrix(res1), m34))
res2 <- BLOCK_mult_Lgrid(m3, m4)
# block size = 1e6 -> 118s / 8.7g
# block size = 1e7 -> 112s / 8.5g
# block size = 1e7; SnowParam(2) -> 76s / 8.5g
# block size = 1e7; SnowParam(4) -> 64s / 8.5 g (4 workers used 16g!)
stopifnot(all.equal(res2, m34))
## m3 %*% m4 but now writing the result to disk
setAutoRealizationBackend("HDF5Array")
res3 <- super_BLOCK_mult(m3, m4, MULT=`%*%`)
# block size = 1e6 -> 206s / 9.2g
# block size = 1e7 -> 201s / 9.2g
stopifnot(identical(as.matrix(res3), m34))
res4 <- BLOCK_mult_Lgrid(m3, m4)
# block size = 1e6 -> 213s / 1g
# block size = 1e7 -> 202s / 1.9g
res4b <- realize(res4)
# block size = 1e6 -> 287s / 1.2g
# block size = 1e7 -> 141s / 1.5g
stopifnot(all.equal(res4b, m34))
# and if we parallelize?
|