File: test_DelayedMatrix-rowsum.R

package info (click to toggle)
r-bioc-delayedarray 0.32.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,596 kB
  • sloc: ansic: 79; makefile: 2
file content (134 lines) | stat: -rw-r--r-- 5,612 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#setAutoRealizationBackend("RleArray")
#setAutoRealizationBackend("HDF5Array")

TEST_m1 <- matrix(runif(100), ncol=5, dimnames=list(NULL, LETTERS[1:5]))
TEST_m1[1, 2] <- NA
TEST_m1[2, 3] <- Inf
TEST_m1[3, 5] <- NaN
TEST_blocklengths1 <- c(1L, 6L, 10L, length(TEST_m1), 1000L * length(TEST_m1))
TEST_blocksizes1 <- TEST_blocklengths1 * get_type_size(type(TEST_m1))

TEST_group1 <- sample(6L, nrow(TEST_m1), replace=TRUE)

test_BLOCK_rowsum_colsum <- function()
{
    BLOCK_rowsum <- DelayedArray:::BLOCK_rowsum
    BLOCK_colsum <- DelayedArray:::BLOCK_colsum

    m1 <- TEST_m1
    m2 <- t(m1)
    group1 <- group2 <- TEST_group1

    library(HDF5Array)
    for (reorder in c(TRUE, FALSE)) {
        for (na.rm in c(FALSE, TRUE)) {
            rs1 <- rowsum(m1, group1, reorder=reorder, na.rm=na.rm)
            cs2 <- colsum(m2, group2, reorder=reorder, na.rm=na.rm)

            ## --- Serial evaluation ---

            for (block_len in TEST_blocklengths1) {
                grid1 <- defaultAutoGrid(m1, block.length=block_len)
                grid2 <- defaultAutoGrid(m2, block.length=block_len)

                ## In-memory realization.
                current <- BLOCK_rowsum(m1, group1,
                                        reorder=reorder, na.rm=na.rm,
                                        grid=grid1, as.sparse=NA,
                                        BPPARAM=NULL, BACKEND=NULL)
                checkEquals(current, rs1)
                current <- BLOCK_colsum(m2, group2,
                                        reorder=reorder, na.rm=na.rm,
                                        grid=grid2, as.sparse=NA,
                                        BPPARAM=NULL, BACKEND=NULL)
                checkEquals(current, cs2)

                ## On-disk realization (HDF5 file).
                current <- BLOCK_rowsum(m1, group1,
                                        reorder=reorder, na.rm=na.rm,
                                        grid=grid1, as.sparse=NA,
                                        BPPARAM=NULL, BACKEND="HDF5Array")
                checkTrue(is(current, "DelayedMatrix"))
                checkTrue(validObject(current, complete=TRUE))
                checkEquals(as.matrix(current), rs1)
                current <- BLOCK_colsum(m2, group2,
                                        reorder=reorder, na.rm=na.rm,
                                        grid=grid2, as.sparse=NA,
                                        BPPARAM=NULL, BACKEND="HDF5Array")
                checkTrue(is(current, "DelayedMatrix"))
                checkTrue(validObject(current, complete=TRUE))
                checkEquals(as.matrix(current), cs2)
            }

            ## --- Parallel evaluation ---

            snow2 <- BiocParallel::SnowParam(workers=2)
            grid1 <- defaultAutoGrid(m1, block.length=6L)
            grid2 <- defaultAutoGrid(m2, block.length=10L)

            ## In-memory realization.
            current <- BLOCK_rowsum(m1, group1, reorder=reorder, na.rm=na.rm,
                                    grid=grid1, as.sparse=NA,
                                    BPPARAM=snow2, BACKEND=NULL)
            checkEquals(current, rs1)
            current <- BLOCK_colsum(m2, group2, reorder=reorder, na.rm=na.rm,
                                    grid=grid2, as.sparse=NA,
                                    BPPARAM=snow2, BACKEND=NULL)
            checkEquals(current, cs2)

            ## On-disk realization (HDF5 file).
            current <- BLOCK_rowsum(m1, group1, reorder=reorder, na.rm=na.rm,
                                    grid=grid1, as.sparse=NA,
                                    BPPARAM=snow2, BACKEND="HDF5Array")
            checkTrue(is(current, "DelayedMatrix"))
            checkTrue(validObject(current, complete=TRUE))
            checkEquals(as.matrix(current), rs1)
            current <- BLOCK_colsum(m2, group2, reorder=reorder, na.rm=na.rm,
                                    grid=grid2, as.sparse=NA,
                                    BPPARAM=snow2, BACKEND="HDF5Array")
            checkTrue(is(current, "DelayedMatrix"))
            checkTrue(validObject(current, complete=TRUE))
            checkEquals(as.matrix(current), cs2)
        }
    }
}

test_rowsum_colsum_DelayedMatrix <- function()
{
    m1 <- TEST_m1
    m2 <- t(m1)
    group1 <- group2 <- TEST_group1

    M1 <- DelayedArray(realize(m1))
    M2 <- DelayedArray(realize(m2))

    on.exit(suppressMessages(setAutoBlockSize()))
    for (reorder in c(TRUE, FALSE)) {
        for (na.rm in c(FALSE, TRUE)) {
            rs1 <- rowsum(m1, group1, reorder=reorder, na.rm=na.rm)
            cs2 <- colsum(m2, group2, reorder=reorder, na.rm=na.rm)

            ## --- Serial evaluation ---

            for (block_size in TEST_blocksizes1) {
                suppressMessages(setAutoBlockSize(block_size))
                current <- rowsum(M1, group1, reorder=reorder, na.rm=na.rm)
                checkEquals(as.matrix(current), rs1)
                current <- colsum(M2, group2, reorder=reorder, na.rm=na.rm)
                checkEquals(as.matrix(current), cs2)
            }

            ## --- Parallel evaluation ---

            setAutoBPPARAM(BiocParallel::SnowParam(workers=2))
            on.exit(setAutoBPPARAM(), add=TRUE)
            suppressMessages(setAutoBlockSize(20))
            current <- rowsum(M1, group1, reorder=reorder, na.rm=na.rm)
            checkEquals(as.matrix(current), rs1)
            current <- colsum(M2, group2, reorder=reorder, na.rm=na.rm)
            checkEquals(as.matrix(current), cs2)
            setAutoBPPARAM()
       }
   }
}