File: DelayedOp-class.R

package info (click to toggle)
r-bioc-delayedarray 0.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 980 kB
  • sloc: ansic: 93; makefile: 2; sh: 1
file content (1392 lines) | stat: -rw-r--r-- 47,050 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
### =========================================================================
### DelayedOp objects
### -------------------------------------------------------------------------
###
### In a DelayedArray object the delayed operations are stored as a tree of
### DelayedOp objects. Each node in the tree is represented by a DelayedOp
### object. 8 types of nodes are currently supported. Each type is a concrete
### DelayedOp subclass:
###
###   Node type                        Represented operation
###   -------------------------------------------------------------------
###   DelayedOp (VIRTUAL)
###   -------------------------------------------------------------------
###   * DelayedUnaryOp (VIRTUAL)
###     o DelayedSubset                Multi-dimensional single bracket
###                                    subsetting.
###     o DelayedAperm                 Extended aperm() (can drop and/or
###                                    add ineffective dimensions).
###     o DelayedUnaryIsoOp (VIRTUAL)  Unary op that preserves the
###                                    geometry.
###       - DelayedUnaryIsoOpStack     Simple ops stacked together.
###       - DelayedUnaryIsoOpWithArgs  One op with vector-like arguments
###                                    along the dimensions of the input.
###       - DelayedSubassign           Multi-dimensional single bracket
###                                    subassignment.
###       - DelayedDimnames            Set/replace the dimnames.
###   -------------------------------------------------------------------
###   * DelayedNaryOp (VIRTUAL)
###     o DelayedNaryIsoOp             N-ary op that preserves the
###                                    geometry.
###     o DelayedAbind                 abind()
###   -------------------------------------------------------------------
###
### All the nodes are array-like objects that must comply with the "seed
### contract" i.e. they must support dim(), dimnames(), and extract_array().
###

### This virtual class and its 8 concrete subclasses are for internal use
### only and never exposed to the end user.
setClass("DelayedOp", contains="Array", representation("VIRTUAL"))

### NOT exported for now.
setGeneric("is_noop", function(x) standardGeneric("is_noop"))

### S3/S4 combo for summary.DelayedOp

.DelayedOp_summary <- function(object) sprintf("%s object", class(object))

summary.DelayedOp <- function(object, ...) .DelayedOp_summary(object, ...)

setMethod("summary", "DelayedOp", summary.DelayedOp)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### DelayedUnaryOp objects
###

setClass("DelayedUnaryOp",
    contains="DelayedOp",
    representation(
        "VIRTUAL",
        seed="ANY"    # The input array-like object. Expected to comply
                      # with the "seed contract".
    ),
    prototype(
        seed=new("array")
    )
)

.validate_DelayedUnaryOp <- function(x)
{
    if (length(dim(x@seed)) == 0L)
        return(wmsg2("the supplied seed must have dimensions"))
    TRUE
}

setValidity2("DelayedUnaryOp", .validate_DelayedUnaryOp)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### DelayedSubset objects
###
### Delayed "Multi-dimensional single bracket subsetting".
###

setClass("DelayedSubset",
    contains="DelayedUnaryOp",
    representation(
        index="list"  # List of subscripts as positive integer vectors,
                      # one per dimension in the input. **Missing** list
                      # elements are allowed and represented by NULLs.
    ),
    prototype(
        index=list(NULL)
    )
)

.validate_DelayedSubset <- function(x)
{
    ## 'index' slot.
    if (length(x@index) != length(dim(x@seed)))
        return(wmsg2("'x@index' must have one list element per dimension ",
                     "in 'x@seed'"))
    if (!is.null(names(x@index)))
        return(wmsg2("'x@index' should not have names"))
    ok <- lapply(x@index,
              function(i) {is.null(i) || is.integer(i) && is.null(names(i))})
    if (!all(unlist(ok)))
        return(wmsg2("each list element in 'x@index' must be NULL ",
                     "or an integer vector with no names on it"))
    TRUE
}

setValidity2("DelayedSubset", .validate_DelayedSubset)

subset_DelayedSubset <- function(x, index)
{
    stopifnot(is(x, "DelayedSubset"))
    x_ndim <- length(x@index)
    stopifnot(is.list(index), length(index) == x_ndim)
    seed_dim <- dim(x@seed)
    ## Would mapply() be faster here?
    x@index <- lapply(seq_len(x_ndim),
        function(along) {
            i0 <- x@index[[along]]
            i <- index[[along]]
            if (is.null(i))
                return(i0)
            if (is.null(i0))
                return(i)
            ans <- i0[i]
            if (isSequence(ans, of.length=seed_dim[[along]]))
                return(NULL)
            ans
        })
    x
}

### 'Nindex' must be a "multidimensional subsetting Nindex" (see
### Nindex-utils.R) or NULL.
new_DelayedSubset <- function(seed=new("array"), Nindex=NULL)
{
    index <- normalizeNindex(Nindex, seed)
    new2("DelayedSubset", seed=seed, index=index)
}

setMethod("is_noop", "DelayedSubset",
    function(x) all(S4Vectors:::sapply_isNULL(x@index))
)

### S3/S4 combo for summary.DelayedSubset

.DelayedSubset_summary <- function(object) "Subset"

summary.DelayedSubset <-
    function(object, ...) .DelayedSubset_summary(object, ...)

setMethod("summary", "DelayedSubset", summary.DelayedSubset)

### Seed contract.

setMethod("dim", "DelayedSubset",
    function(x) get_Nindex_lengths(x@index, dim(x@seed))
)

setMethod("dimnames", "DelayedSubset",
    function(x) subset_dimnames_by_Nindex(dimnames(x@seed), x@index)
)

setMethod("extract_array", "DelayedSubset",
    function(x, index)
    {
        x2 <- subset_DelayedSubset(x, index)
        extract_array(x2@seed, x2@index)
    }
)

### is_sparse() and extract_sparse_array()

setMethod("is_sparse", "DelayedSubset",
    function(x)
    {
        if (!is_sparse(x@seed))
            return(FALSE)
        ## Duplicates in x@index break structural sparsity.
        !any(vapply(x@index, anyDuplicated,
                    integer(1), USE.NAMES=FALSE))
    }
)

### 'is_sparse(x)' is assumed to be TRUE and 'index' is assumed to
### not contain duplicates. See "extract_sparse_array() Terms of Use"
### in SparseArraySeed-class.R
setMethod("extract_sparse_array", "DelayedSubset",
    function(x, index)
    {
        x2 <- subset_DelayedSubset(x, index)
        ## Assuming that the caller respected "extract_sparse_array() Terms
        ## of Use" (see SparseArraySeed-class.R), 'is_sparse(x)' should be
        ## TRUE and the subscripts in 'index' should not contain duplicates.
        ## This in turn means that the subscripts in 'x2@index' should not
        ## contain duplicates either so the call below should also respect
        ## "extract_sparse_array() Terms of Use".
        extract_sparse_array(x2@seed, x2@index)
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### DelayedAperm objects
###
### Delayed "Extended aperm()" (can drop and/or add ineffective dimensions).
### Note that since only "ineffective" dimensions (i.e. dimensions equal to 1)
### can be dropped or added, length is always preserved.
###

setClass("DelayedAperm",
    contains="DelayedUnaryOp",
    representation(
        perm="integer"  # Index into 'dim(seed)' describing the
                        # **rearrangement** of the dimensions i.e. which
                        # dimensions of the input to keep and in which order.
                        # Only ineffective dimensions can be dropped. Note
                        # that NAs are allowed and indicate the addition of
                        # an ineffective dimension. For example if 'dim(seed)'
                        # is c(20, 1, 15, 2, 1) then a DelayedAperm object
                        # where 'perm' is set to c(NA, NA, 3, 1, NA, 4, 5)
                        # represents an operation that returns an array with
                        # dimensions c(1, 1, 15, 20, 1, 2, 1).
    ),
    prototype(
        perm=1L
    )
)

.validate_DelayedAperm <- function(x)
{
    ## 'perm' slot.
    msg <- validate_perm(x@perm, dim(x@seed))
    if (!isTRUE(msg))
        return(msg)
    TRUE
}

setValidity2("DelayedAperm", .validate_DelayedAperm)

new_DelayedAperm <- function(seed=new("array"), perm=NULL)
{
    perm <- normarg_perm(perm, dim(seed))
    new2("DelayedAperm", seed=seed, perm=perm)
}

setMethod("is_noop", "DelayedAperm",
    function(x) isSequence(x@perm, length(dim(x@seed)))
)

### S3/S4 combo for summary.DelayedAperm

.DelayedAperm_summary <- function(object)
{
    perm <- as.character(object@perm)
    if (length(perm) >= 2L)
        perm <- sprintf("c(%s)", paste0(perm, collapse=","))
    sprintf("Aperm (perm=%s)", perm)
}

summary.DelayedAperm <-
    function(object, ...) .DelayedAperm_summary(object, ...)

setMethod("summary", "DelayedAperm", summary.DelayedAperm)

### Seed contract.

.get_DelayedAperm_dim <- function(x)
{
    seed_dim <- dim(x@seed)
    ans <- seed_dim[x@perm]
    ans[is.na(x@perm)] <- 1L
    ans
}

setMethod("dim", "DelayedAperm", .get_DelayedAperm_dim)

.get_DelayedAperm_dimnames <- function(x)
{
    seed_dimnames <- dimnames(x@seed)
    if (is.null(seed_dimnames))
        return(NULL)
    simplify_NULL_dimnames(seed_dimnames[x@perm])
}

setMethod("dimnames", "DelayedAperm", .get_DelayedAperm_dimnames)

project_index_on_seed <- function(index, x)
{
    stopifnot(is(x, "DelayedAperm"),
              is.list(index),
              length(index) == length(x@perm))
    nonNA_idx <- which(!is.na(x@perm))
    perm0 <- x@perm[nonNA_idx]
    index0 <- index[nonNA_idx]
    seed_dim <- dim(x@seed)
    seed_index <- vector("list", length=length(seed_dim))
    seed_index[perm0] <- index0
    seed_index
}

.extract_array_from_DelayedAperm <- function(x, index)
{
    seed_index <- project_index_on_seed(index, x)
    a <- extract_array(x@seed, seed_index)
    a <- aperm2(a, x@perm)
    index[!is.na(x@perm)] <- list(NULL)
    subset_by_Nindex(a, index)
}

setMethod("extract_array", "DelayedAperm",
    .extract_array_from_DelayedAperm
)

### is_sparse() and extract_sparse_array()

setMethod("is_sparse", "DelayedAperm", function(x) is_sparse(x@seed))

### 'is_sparse(x)' is assumed to be TRUE and 'index' is assumed to
### not contain duplicates. See "extract_sparse_array() Terms of Use"
### in SparseArraySeed-class.R
setMethod("extract_sparse_array", "DelayedAperm",
    function(x, index)
    {
        seed_index <- project_index_on_seed(index, x)
        sas <- extract_sparse_array(x@seed, seed_index)
        sas <- aperm(sas, x@perm)
        index[!is.na(x@perm)] <- list(NULL)
        extract_sparse_array(sas, index)
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### DelayedUnaryIsoOp objects
###
### Delayed "Unary op that preserves the geometry".
###

setClass("DelayedUnaryIsoOp",
    contains="DelayedUnaryOp",
    representation("VIRTUAL")
)

### Seed contract.
### The 3 default methods below give DelayedUnaryIsoOp derivatives a no-op
### semantic by default.
### DelayedUnaryIsoOpStack and DelayedUnaryIsoOpWithArgs objects overwrite
### this default "extract_array" method.
### DelayedDimnames objects overwrite this default "dimnames" method.
### Note that a DelayedArray object is also a DelayedUnaryIsoOp derivative
### and is considered to be the root node of the tree of DelayedOp objects
### contained in it. From a DelayedOp point of view, this root node must
### represent a no-op so DelayedArray objects inherit the 3 default methods
### below.

setMethod("dim", "DelayedUnaryIsoOp", function(x) dim(x@seed))

setMethod("dimnames", "DelayedUnaryIsoOp", function(x) dimnames(x@seed))

setMethod("extract_array", "DelayedUnaryIsoOp",
    function(x, index) extract_array(x@seed, index)
)

.set_or_check_dim <- function(x, dim)
{
    x_dim <- dim(x)
    if (is.null(x_dim)) {
        dim(x) <- dim
    } else {
        stopifnot(identical(x_dim, dim))
    }
    x
}

### is_sparse() and extract_sparse_array()
### Like the 3 default methods above (seed contract), the 2 default methods
### below also implement a no-op semantic and are also inherited by
### DelayedArray objects.

setMethod("is_sparse", "DelayedUnaryIsoOp", function(x) is_sparse(x@seed))

### 'is_sparse(x)' is assumed to be TRUE and 'index' is assumed to
### not contain duplicates. See "extract_sparse_array() Terms of Use"
### in SparseArraySeed-class.R
setMethod("extract_sparse_array", "DelayedUnaryIsoOp",
    function(x, index) extract_sparse_array(x@seed, index)
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### DelayedUnaryIsoOpStack objects
###
### Delayed "Unary op that preserves the geometry" where the op is made of
### simple ops stacked together.
###

setClass("DelayedUnaryIsoOpStack",
    contains="DelayedUnaryIsoOp",
    representation(
        OPS="list"  # The functions to apply to the input i.e. to the
                    # incoming array-like object. For example log
                    # or function(x) log(x + 1). It should act as an
                    # isomorphism i.e. always output an array-like
                    # object **parallel** to the input (i.e. with the
                    # same dimensions as the input).
    ),
    prototype(
        OPS=list()
    )
)

new_DelayedUnaryIsoOpStack <- function(seed=new("array"), OPS=list(),
                                       check.op=FALSE)
{
    seed_dim <- dim(seed)
    if (length(seed_dim) == 0L)
        stop(wmsg("'seed' must have dimensions"))

    if (!is.list(OPS))
        stop(wmsg("'OPS' must be a list"))
    OPS <- lapply(OPS, match.fun)

    ans <- new2("DelayedUnaryIsoOpStack", seed=seed, OPS=OPS)
    if (check.op) {
        ## We quickly test the validity of the operation by calling type()
        ## on the returned object. This will fail if the operation cannot
        ## be applied e.g. if the user does something like:
        ##   M <- DelayedArray(matrix(character(12), ncol=3))
        ##   M2 <- log(M)
        ## The test is cheap and type() will be called anyway by show()
        ## later when the user tries to display M2. Better fail early than
        ## late!
        type(ans)  # we ignore the returned value
    }
    ans
}

### S3/S4 combo for summary.DelayedUnaryIsoOpStack

.DelayedUnaryIsoOpStack_summary <- function(object) "Unary iso op stack"

summary.DelayedUnaryIsoOpStack <-
    function(object, ...) .DelayedUnaryIsoOpStack_summary(object, ...)

setMethod("summary", "DelayedUnaryIsoOpStack", summary.DelayedUnaryIsoOpStack)

### Seed contract.
### We inherit the "dim" and "dimnames" default methods for DelayedUnaryIsoOp
### derivatives, and overwite their "extract_array" method.

setMethod("extract_array", "DelayedUnaryIsoOpStack",
    function(x, index)
    {
        a <- extract_array(x@seed, index)
        a_dim <- dim(a)
        for (OP in x@OPS) {
            a <- OP(a)
            ## Some operations (e.g. dnorm()) don't propagate the "dim"
            ## attribute if the input array is empty.
            a <- .set_or_check_dim(a, a_dim)
        }
        a
    }
)

### is_sparse() and extract_sparse_array()

### Make an ordinary array of the specified type and number of dimensions,
### and with a single "zero" element. The single element is the "zero"
### associated with the specified type e.g. the empty string ("") if type
### is "character", FALSE if it's "logical", etc... More generally, the
### "zero" element is whatever 'vector(type, length=1L)' produces.
.make_array_of_one_zero <- function(type, ndim)
{
    array(vector(type, length=1L), dim=rep.int(1L, ndim))
}

setMethod("is_sparse", "DelayedUnaryIsoOpStack",
    function(x)
    {
        if (!is_sparse(x@seed))
            return(FALSE)
        ## Structural sparsity will be propagated if the operations in
        ## x@OPS preserve the zeroes. To find out whether zeroes are preserved
        ## or not, we replace the current seed with an array of one "zero",
        ## that is, with an ordinary array of the same number of dimensions
        ## and type as the seed, but with a single "zero" element. Then we
        ## apply the operations in x@OPS to it and see whether the zero was
        ## preserved or not.
        seed_ndim <- length(dim(x@seed))
        x@seed <- .make_array_of_one_zero(type(x@seed), seed_ndim)
        a0 <- extract_array(x, rep.int(list(1L), seed_ndim))
        as.vector(a0) == vector(type(a0), length=1L)
    }
)

### 'is_sparse(x)' is assumed to be TRUE and 'index' is assumed to
### not contain duplicates. See "extract_sparse_array() Terms of Use"
### in SparseArraySeed-class.R
setMethod("extract_sparse_array", "DelayedUnaryIsoOpStack",
    function(x, index)
    {
        ## Assuming that the caller respected "extract_sparse_array() Terms
        ## of Use" (see SparseArraySeed-class.R), 'is_sparse(x)' should be
        ## TRUE so we can assume that the operations in x@OPS preserve the
        ## zeroes and thus only need to apply them to the nonzero data.
        sas <- extract_sparse_array(x@seed, index)
        sas_nzdata <- sas@nzdata
        for (OP in x@OPS)
            sas_nzdata <- OP(sas_nzdata)
        sas@nzdata <- sas_nzdata
        sas
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### DelayedUnaryIsoOpWithArgs objects
###
### Delayed "Unary op with arguments that preserves the geometry".
### Here the op can have vector-like arguments along the dimensions of the
### input.
###

setClass("DelayedUnaryIsoOpWithArgs",
    contains="DelayedUnaryIsoOp",
    representation(
        OP="function",     # The function to apply to the input i.e. to the
                           # incoming array-like object. For example `+` or
                           # log. It should act as an isomorphism i.e. always
                           # output an array-like object **parallel** to the
                           # input (i.e. with the same dimensions as the input).

        Largs="list",      # Left arguments to OP i.e. arguments to place
                           # before the input array in the function call.
        Rargs="list",      # Right arguments to OP i.e. arguments to place
                           # after the input array in the function call.

        Lalong="integer",  # One integer (or NA) per left argument indicating
                           # which dimension of the input array the argument
                           # is parallel to.
        Ralong="integer"   # One integer (or NA) per right argument indicating
                           # which dimension of the input array the argument
                           # is parallel to.
    ),
    prototype(
        OP=identity
    )
)

.normarg_Lalong_or_Ralong <- function(Lalong, Largs, seed_dim)
{
    if (identical(Lalong, NA))
        return(rep.int(NA_integer_, length(Largs)))
    if (!(is.numeric(Lalong) && length(Lalong) == length(Largs)))
        stop(wmsg("'Lalong' and 'Ralong' must be integer vectors ",
                  "parallel to 'Largs' and 'Rargs', respectively"))
    if (!is.integer(Lalong))
        Lalong <- as.integer(Lalong)
    nonNA_idx <- which(!is.na(Lalong))
    nonNA_Lalong <- Lalong[nonNA_idx]
    if (S4Vectors:::anyMissingOrOutside(nonNA_Lalong, 1L, length(seed_dim)))
        stop(wmsg("all non-NA values in 'Lalong' and 'Ralong' must ",
                  "be >= 1 and <= 'length(dim(seed))'"))
    if (any(Lalong != 1L, na.rm=TRUE))
        stop(wmsg("arguments in 'Largs' and 'Rargs' can only go along ",
                  "with the first dimension at the moment"))
    ok <- elementNROWS(Largs[nonNA_idx]) == seed_dim[nonNA_Lalong]
    if (!all(ok))
        stop(wmsg("some arguments in 'Largs' and/or 'Rargs' are not ",
                  "parallel to the dimension that they go along with"))
    Lalong
}

new_DelayedUnaryIsoOpWithArgs <- function(seed=new("array"),
                                          OP=identity,
                                          Largs=list(), Rargs=list(),
                                          Lalong=NA, Ralong=NA,
                                          check.op=FALSE)
{
    seed_dim <- dim(seed)
    if (length(seed_dim) == 0L)
        stop(wmsg("'seed' must have dimensions"))

    stopifnot(is.list(Largs), is.list(Rargs))
    Lalong <- .normarg_Lalong_or_Ralong(Lalong, Largs, seed_dim)
    Ralong <- .normarg_Lalong_or_Ralong(Ralong, Rargs, seed_dim)

    OP <- match.fun(OP)

    ans <- new2("DelayedUnaryIsoOpWithArgs", seed=seed,
                                             OP=OP,
                                             Largs=Largs, Rargs=Rargs,
                                             Lalong=Lalong, Ralong=Ralong)
    if (check.op)
        type(ans)  # we ignore the returned value
    ans
}

### S3/S4 combo for summary.DelayedUnaryIsoOpWithArgs

.DelayedUnaryIsoOpWithArgs_summary <- function(object) "Unary iso op with args"

summary.DelayedUnaryIsoOpWithArgs <-
    function(object, ...) .DelayedUnaryIsoOpWithArgs_summary(object, ...)

setMethod("summary", "DelayedUnaryIsoOpWithArgs",
    summary.DelayedUnaryIsoOpWithArgs
)

### Seed contract.
### We inherit the "dim" and "dimnames" default methods for DelayedUnaryIsoOp
### derivatives, and overwite their "extract_array" method.

subset_args <- function(args, along, index)
{
    subset_arg <- function(arg, MARGIN) {
        if (is.na(MARGIN))
            return(arg)
        i <- index[[MARGIN]]
        if (is.null(i))
            return(arg)
        extractROWS(arg, i)
    }
    mapply(subset_arg, args, along, SIMPLIFY=FALSE, USE.NAMES=FALSE)
}

setMethod("extract_array", "DelayedUnaryIsoOpWithArgs",
    function(x, index)
    {
        a <- extract_array(x@seed, index)

        ## Subset the left and right arguments that go along with a dimension.
        Largs <- subset_args(x@Largs, x@Lalong, index)
        Rargs <- subset_args(x@Rargs, x@Ralong, index)

        ans <- do.call(x@OP, c(Largs, list(a), Rargs))

        ## Some operations (e.g. dnorm()) don't propagate the "dim" attribute
        ## if the input array is empty.
        .set_or_check_dim(ans, dim(a))
    }
)

### is_sparse() and extract_sparse_array()

### DelayedUnaryIsoOpWithArgs objects are NOT considered to propagate
### structural sparsity at the moment. However it would be nice if
### things like 'M * runif(nrow(M))' or 'M / runif(nrow(M))' propagated
### sparsity. These are simplified versions of the following use case by
### Aaron:
###   library(TENxBrainData)
###   sce <- TENxBrainData()
###   sf <- runif(ncol(sce))
###   lcounts <- log2(t(t(counts(sce))/sf) + 1)
### 'lcounts' should be considered sparse but right now it's not!
### TODO: The "is_sparse" method below should be able to propagate sparsity
### of 'A * v', 'v * A', and 'A / v',  when 'length(v)' is 'nrow(A)' and
### 'v' does not contain infinite or NA or NaN values (in the multiplication
### case) and no zero or NA or NaN values (in the division case).
setMethod("is_sparse", "DelayedUnaryIsoOpWithArgs", function(x) FALSE)

setMethod("extract_sparse_array", "DelayedUnaryIsoOpWithArgs",
    function(x, index)
        stop(wmsg("extract_sparse_array() is not supported ",
                  "on DelayedUnaryIsoOpWithArgs objects"))
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### DelayedSubassign objects
###
### Delayed "Multi-dimensional single bracket subassignment".
###

### Even though strictly speaking DelayedSubassign nodes are binary nodes
### (subassigment operates on 2 array-like objects, the "left value" and the
### "right value"), it turns out to be more convenient (and natural) to treat
### them as unary nodes (e.g. in nseed() and seed()). This is why we make
### DelayedSubassign extend DelayedUnaryOp (via DelayedUnaryIsoOp).
setClass("DelayedSubassign",
    contains="DelayedUnaryIsoOp",
    representation(
        Lindex="list",    # The "left index". List of subscripts as positive
                          # integer vectors, one per dimension in the input.
                          # **Missing** list elements are allowed and
                          # represented by NULLs.
                          # Allowed to contain duplicates BUT NO NAs when the
                          # "Rvalue" slot is an ordinary vector (atomic or
                          # list) of length 1.
                          # Allowed to contain NAs BUT NO DUPLICATES when the
                          # "Rvalue" slot is an array-like object.

        Rvalue="ANY",     # The "right value" i.e. the array-like object on the
                          # right side of the subassignment. Expected to comply
                          # with the "seed contract". Alternatively, it can be
                          # an ordinary vector (atomic or list) of length 1.

        .nogap="logical"  # One logical per dimension in the input indicating
                          # whether the corresponding subscript in the "left
                          # index" reaches all valid positions along the
                          # seed dimension associated with it.
    ),
    prototype(
        Lindex=list(NULL),
        Rvalue=NA,
        .nogap=TRUE
    )
)

.validate_DelayedSubassign <- function(x)
{
    ## TODO!
    TRUE
}

setValidity2("DelayedSubassign", .validate_DelayedSubassign)

### 'Nindex' must be a "multidimensional subsetting Nindex" (see
### Nindex-utils.R) or NULL.
new_DelayedSubassign <- function(seed=new("array"), Nindex=NULL, Rvalue=NA)
{
    Lindex <- normalizeNindex(Nindex, seed)
    seed_dim <- dim(seed)
    nogap <- subscript_has_nogap(Lindex, seed_dim)
    Rvalue_dim <- dim(Rvalue)
    if (is.null(Rvalue_dim)) {
        if (!(is.vector(Rvalue) && length(Rvalue) == 1L))
            stop(wmsg("replacement value must be an array-like object ",
                      "(or an ordinary vector of length 1)"))
        ## 'x@Rvalue' is an ordinary vector (atomic or list) of length 1
    } else {
        ## 'x@Rvalue' is an array-like object
        expected_Rvalue_dim <- get_Nindex_lengths(Lindex, seed_dim)
        if (!identical(Rvalue_dim, expected_Rvalue_dim))
            stop(wmsg("dimensions of replacement value are incompatible ",
                      "with the number of array elements to replace"))
        ## For each non-NULL subscript, keep **last** duplicate only and
        ## replace all previous duplicates with NAs.
        Lindex <- lapply(Lindex,
            function(Li) {
                if (is.null(Li))
                    return(NULL)
                Li[duplicated(Li, fromLast=TRUE)] <- NA_integer_
                Li
            })
    }
    new2("DelayedSubassign", seed=seed, Lindex=Lindex, Rvalue=Rvalue,
                             .nogap=nogap)
}

### Is the subassignment a no-op with respect to its "seed" slot? Note that
### even when zero array elements are being replaced, the subassignment can
### still alter the type.
setMethod("is_noop", "DelayedSubassign",
    function(x)
    {
        ## Is any array element being replaced by this subassignment?
        if (all(get_Nindex_lengths(x@Lindex, dim(x@seed)) != 0L))
            return(FALSE)
        type(x) == type(x@seed)
    }
)

### S3/S4 combo for summary.DelayedSubassign

.DelayedSubassign_summary <- function(object) "Subassign"

summary.DelayedSubassign <-
    function(object, ...) .DelayedSubassign_summary(object, ...)

setMethod("summary", "DelayedSubassign", summary.DelayedSubassign)

### Do NOT use if 'x@Lindex' might contain duplicates! NAs are ok.
### The returned index won't contain NAs along the dimensions with no gap
### (i.e. along the dimensions for which 'x@.nogap' is TRUE).
make_Mindex <- function(index, x)
{
    stopifnot(is(x, "DelayedSubassign"),
              is.list(index),
              length(index) == length(x@Lindex))
    x_dim <- dim(x)
    lapply(seq_along(index),
        function(along) {
            i <- index[[along]]
            Li <- x@Lindex[[along]]
            if (is.null(Li))
                return(i)
            if (!is.null(i)) {
                ## match() will do the right thing if 'Li' contains NAs but
                ## NOT if it contains duplicates! This is because it will
                ## find the match to the first duplicate when we need the
                ## match to the last one.
                return(match(i, Li))
            }
            d <- x_dim[[along]]
            ## A slightly faster version of 'match(seq_len(d), Li)'. All the
            ## non-NA values in 'Li' are supposed to be >= 1 and <= d.
            m <- rep.int(NA_integer_, d)
            nonNA_idx <- which(!is.na(Li))
            m[Li[nonNA_idx]] <- seq_along(Li)[nonNA_idx]
            m
        })
}

### The returned index should never contain NAs!
.get_Lindex2_from_Mindex <- function(Mindex, nogap)
{
    lapply(seq_along(Mindex),
        function(along) {
            if (nogap[[along]])
                return(NULL)
            m <- Mindex[[along]]
            Li2 <- which(!is.na(m))
            if (length(Li2) == length(m))
                return(NULL)
            Li2
        })
}

### A more efficient version of .get_Lindex2_from_Mindex(make_Mindex(...))
### that can only be used when the right value of the subassignment is an
### ordinary vector of length 1.
### Assume that 'x@Lindex' does NOT contain NAs. Duplicates are ok.
### The returned index should never contain NAs!
.make_Lindex2 <- function(index, x)
{
    stopifnot(is(x, "DelayedSubassign"),
              is.list(index),
              length(index) == length(x@Lindex))
    lapply(seq_along(index),
        function(along) {
            if (x@.nogap[[along]])
                return(NULL)
            i <- index[[along]]
            Li <- x@Lindex[[along]]
            if (is.null(i))
                return(Li)
            Li2 <- which(i %in% Li)
            if (length(Li2) == length(i))
                return(NULL)
            Li2
        })
}

### The returned index should never contain NAs!
.get_Rindex_from_Mindex <- function(Mindex, Lindex2)
{
    lapply(seq_along(Mindex),
        function(along) {
            m <- Mindex[[along]]
            if (is.null(Lindex2[[along]]))
                return(m)
            m[!is.na(m)]
        })
}

### 'index' is assumed to be a normalized Nindex compatible with
### DelayedSubassign object 'x'.
### Return a DelayedSubassign object that represents the action of subsetting
### 'x' with 'index'. This new DelayedSubassign object is obtained by:
### - replacing 'x@Lindex' with a left index that contains strictly sorted
###   subscripts with no NAs;
### - replacing 'x@seed' with a DelayedSubset object that represents the
###   action of subsetting it with 'index';
### - if 'x@Rvalue' is an array-like object, replacing it with a DelayedSubset
###   object that represents the action of subsetting it with the index
###   returned by .get_Rindex_from_Mindex().
subset_DelayedSubassign <- function(x, index=NULL)
{
    stopifnot(is(x, "DelayedSubassign"))
    if (is.null(index))
        index <- vector("list", length=length(x@Lindex))
    ans_seed <- new2("DelayedSubset", seed=x@seed, index=index, check=FALSE)
    if (is.null(dim(x@Rvalue))) {
        ## 'x@Rvalue' is an ordinary vector (atomic or list) of length 1
        ans_Lindex <- .make_Lindex2(index, x)
        ans_Rvalue <- x@Rvalue
    } else {
        ## 'x@Rvalue' is an array-like object
        Mindex <- make_Mindex(index, x)
        ans_Lindex <- .get_Lindex2_from_Mindex(Mindex, x@.nogap)
        Rindex <- .get_Rindex_from_Mindex(Mindex, ans_Lindex)
        ans_Rvalue <- new2("DelayedSubset", seed=x@Rvalue, index=Rindex,
                                            check=FALSE)
    }
    ans_nogap <- subscript_has_nogap(ans_Lindex, dim(ans_seed))
    new2("DelayedSubassign", seed=ans_seed,
                             Lindex=ans_Lindex,
                             Rvalue=ans_Rvalue,
                             .nogap=ans_nogap,
                             check=FALSE)
}

### Seed contract.
### We inherit the "dim" and "dimnames" default methods for DelayedUnaryIsoOp
### derivatives, and overwite their "extract_array" method.

.extract_array_from_DelayedSubassign <- function(x, index)
{
    x2 <- subset_DelayedSubassign(x, index)
    if (is.null(dim(x2@Rvalue))) {
        ## 'x2@Rvalue' is an ordinary vector (atomic or list) of length 1
        a2 <- x2@Rvalue
    } else {
        ## 'x2@Rvalue' is an array-like object
        a2 <- extract_array(x2@Rvalue@seed, x2@Rvalue@index)
    }
    if (all(x2@.nogap)) {
        if (is.null(dim(x2@Rvalue))) {
            a_dim <- get_Nindex_lengths(index, dim(x2@seed))
            a2 <- array(a2, a_dim)
        }
        return(a2)
    }
    a <- extract_array(x2@seed@seed, x2@seed@index)
    replace_by_Nindex(a, x2@Lindex, a2)
}

setMethod("extract_array", "DelayedSubassign",
    .extract_array_from_DelayedSubassign
)

### is_sparse() and extract_sparse_array()

setMethod("is_sparse", "DelayedSubassign",
    function(x) {
        ## We return FALSE for now.
        ## TODO: Implement this.
        FALSE
    }
)

### 'is_sparse(x)' is assumed to be TRUE and 'index' is assumed to
### not contain duplicates. See "extract_sparse_array() Terms of Use"
### in SparseArraySeed-class.R
setMethod("extract_sparse_array", "DelayedSubassign",
    function(x, index)
    {
        stop("NOT IMPLEMENTED YET!")
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### DelayedDimnames objects
###
### Delayed "Set dimnames".
###

### Used in unit tests!
.INHERIT_FROM_SEED <- -1L

setClass("DelayedDimnames",
    contains="DelayedUnaryIsoOp",
    representation(
        dimnames="list"  # List with one list element per dimension in
                         # the input. Each list element must be NULL,
                         # or a character vector, or special value
                         # .INHERIT_FROM_SEED
    ),
    prototype(
        dimnames=list(.INHERIT_FROM_SEED)
    )
)

.validate_DelayedDimnames <- function(x)
{
    seed_dim <- dim(x@seed)
    seed_ndim <- length(seed_dim)

    ## 'dimnames' slot.
    if (length(x@dimnames) != seed_ndim)
        return(wmsg2("'x@dimnames' must have one list element per dimension ",
                     "in 'x@seed'"))
    ok <- mapply(function(dn, d) {
                     identical(dn, .INHERIT_FROM_SEED) ||
                     is.null(dn) ||
                     is.character(dn) && length(dn) == d
                 },
                 x@dimnames, seed_dim,
                 SIMPLIFY=FALSE, USE.NAMES=FALSE)
    if (!all(unlist(ok)))
        return(wmsg2("each list element in 'x@dimnames' must be NULL, ",
                     "or a character vector of length the extent of ",
                     "the corresponding dimension, or special value ",
                     .INHERIT_FROM_SEED))
    TRUE
}

setValidity2("DelayedDimnames", .validate_DelayedDimnames)

### TODO: Also make sure that each 'dimnames' list element is either NULL or
### a character vector of the correct length.
.normalize_dimnames <- function(dimnames, ndim)
{
    if (is.null(dimnames))
        return(vector("list", length=ndim))
    if (!is.list(dimnames))
        stop("the supplied dimnames must be a list")
    if (length(dimnames) != ndim)
        stop(wmsg("the supplied dimnames must have one list element ",
                  "per dimension in the array-like object"))
    dimnames
}

new_DelayedDimnames <- function(seed=new("array"), dimnames=.INHERIT_FROM_SEED)
{
    seed_dim <- dim(seed)
    seed_ndim <- length(seed_dim)
    if (identical(dimnames, .INHERIT_FROM_SEED)) {
        dimnames <- rep.int(list(.INHERIT_FROM_SEED), seed_ndim)
    } else {
        dimnames <- .normalize_dimnames(dimnames, seed_ndim)
        seed_dimnames <- dimnames(seed)
        dimnames <- lapply(seq_len(seed_ndim),
                           function(along) {
                               dn <- dimnames[[along]]
                               if (identical(dn, seed_dimnames[[along]]))
                                   return(.INHERIT_FROM_SEED)
                               dn
                           })
    }
    new2("DelayedDimnames", seed=seed, dimnames=dimnames)
}

setMethod("is_noop", "DelayedDimnames",
    function(x)
        all(vapply(x@dimnames, identical, logical(1), .INHERIT_FROM_SEED))
)

### S3/S4 combo for summary.DelayedDimnames

.DelayedDimnames_summary <- function(object) "Set dimnames"

summary.DelayedDimnames <-
    function(object, ...) .DelayedDimnames_summary(object, ...)

setMethod("summary", "DelayedDimnames", summary.DelayedDimnames)

### Seed contract.
### We inherit the "dim" and "extract_array" default methods for
### DelayedUnaryIsoOp derivatives, and overwite their "dimnames" method.

.get_DelayedDimnames_dimnames <- function(x)
{
    x_dimnames <- x@dimnames
    seed_dimnames <- dimnames(x@seed)
    ans <- lapply(seq_along(x_dimnames),
                  function(along) {
                      dn <- x_dimnames[[along]]
                      if (identical(dn, .INHERIT_FROM_SEED))
                          dn <- seed_dimnames[[along]]
                      dn
                  })
    simplify_NULL_dimnames(ans)
}

setMethod("dimnames", "DelayedDimnames", .get_DelayedDimnames_dimnames)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### DelayedNaryOp objects
###

setClass("DelayedNaryOp",
    contains="DelayedOp",
    representation(
        "VIRTUAL",
        seeds="list"  # The input array-like objects. Each object is
                      # expected to comply with the "seed contract".
    ),
    prototype(
        seeds=list(new("array"))
    )
)

.validate_DelayedNaryOp <- function(x)
{
    if (length(x@seeds) == 0L)
        return(wmsg2("'x@seeds' cannot be empty"))
    TRUE
}

setValidity2("DelayedNaryOp", .validate_DelayedNaryOp)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### DelayedNaryIsoOp objects
###
### Delayed "N-ary op that preserves the geometry".
### The input objects must be "conformable" array-like objects i.e. they all
### must have the same dimensions.
###

setClass("DelayedNaryIsoOp",
    contains="DelayedNaryOp",
    representation(
        OP="function",  # The function to use to combine the input objects.
                        # Should act as an isomorphism i.e. always return an
                        # array-like object **parallel** to the input objects
                        # (i.e. with the same dimensions).

        Rargs="list"    # Additional right arguments to OP.
    ),
    prototype(
        OP=identity
    )
)

.arrays_are_conformable <- function(objects)
{
    dims <- lapply(objects, dim)
    ndims <- lengths(dims)
    first_ndim <- ndims[[1L]]
    if (!all(ndims == first_ndim))
        return(FALSE)
    tmp <- unlist(dims, use.names=FALSE)
    if (is.null(tmp))
        return(FALSE)
    dims <- matrix(tmp, ncol=length(objects))
    first_dim <- dims[ , 1L]
    all(dims == first_dim)
}

.validate_DelayedNaryIsoOp <- function(x)
{
    ## 'seeds' slot.
    if (!.arrays_are_conformable(x@seeds))
        return(wmsg2("'x@seeds' must be a list of conformable ",
                     "array-like objects"))
    TRUE
}

setValidity2("DelayedNaryIsoOp", .validate_DelayedNaryIsoOp)

new_DelayedNaryIsoOp <- function(OP=identity, seed=new("array"), ...,
                                 Rargs=list())
{
    OP <- match.fun(OP)
    seeds <- unname(list(seed, ...))
    if (!.arrays_are_conformable(seeds))
        stop(wmsg("non-conformable array-like objects"))
    new2("DelayedNaryIsoOp", seeds=seeds, OP=OP, Rargs=Rargs, check=FALSE)
}

### S3/S4 combo for summary.DelayedNaryIsoOp

.DelayedNaryIsoOp_summary <- function(object) "N-ary iso op"

summary.DelayedNaryIsoOp <-
    function(object, ...) .DelayedNaryIsoOp_summary(object, ...)

setMethod("summary", "DelayedNaryIsoOp", summary.DelayedNaryIsoOp)

### Seed contract.

setMethod("dim", "DelayedNaryIsoOp", function(x) dim(x@seeds[[1L]]))

setMethod("dimnames", "DelayedNaryIsoOp",
    function(x) get_first_non_NULL_dimnames(x@seeds)
)

setMethod("extract_array", "DelayedNaryIsoOp",
    function(x, index)
    {
        arrays <- lapply(x@seeds, extract_array, index)
        do.call(x@OP, c(arrays, x@Rargs))
    }
)

### is_sparse() and extract_sparse_array()

setMethod("is_sparse", "DelayedNaryIsoOp",
    function(x)
    {
        ok <- vapply(x@seeds, is_sparse, logical(1), USE.NAMES=FALSE)
        if (!all(ok))
            return(FALSE)
        if (length(x@Rargs) != 0L)
            return(FALSE)
        ## Structural sparsity will be propagated if the operation in
        ## x@OP preserves the zeroes. To find out whether zeroes are preserved
        ## or not, we replace each current seed with an array of one "zero",
        ## that is, with an ordinary array of the same number of dimensions
        ## and type as the seed, but with a single "zero" element. Then we
        ## apply the n-ary operation in x@OP to them and see whether the
        ## zero were preserved or not.
        seed_ndim <- length(dim(x@seeds[[1L]]))
        x@seeds <- lapply(x@seeds,
            function(seed) .make_array_of_one_zero(type(seed), seed_ndim))
        a0 <- extract_array(x, rep.int(list(1L), seed_ndim))
        as.vector(a0) == vector(type(a0), length=1L)
    }
)

### 'is_sparse(x)' is assumed to be TRUE and 'index' is assumed to
### not contain duplicates. See "extract_sparse_array() Terms of Use"
### in SparseArraySeed-class.R
setMethod("extract_sparse_array", "DelayedNaryIsoOp",
    function(x, index)
    {
        stop("NOT IMPLEMENTED YET!")
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### DelayedAbind objects
###
### Delayed "abind()".
###

setClass("DelayedAbind",
    contains="DelayedNaryOp",
    representation(
        along="integer"  # Single integer indicating the dimension along
                         # which to bind the input objects.
    ),
    prototype(
        along=1L
    )
)

.validate_DelayedAbind <- function(x)
{
    ## 'along' slot.
    if (!(isSingleInteger(x@along) && x@along >= 1L))
        return(wmsg2("'x@along' must be a single positive integer"))
    ndim <- length(dim(x@seeds[[1L]]))
    if (ndim < x@along)
        return(wmsg2("the array-like objects to bind must have at least ",
                     x@along, " dimensions for this binding operation"))

    dims <- get_dims_to_bind(x@seeds, x@along)
    if (is.character(dims))
        return(wmsg2(dims))
    TRUE
}

setValidity2("DelayedAbind", .validate_DelayedAbind)

new_DelayedAbind <- function(seeds, along)
{
    new2("DelayedAbind", seeds=seeds, along=along)
}

### S3/S4 combo for summary.DelayedAbind

.DelayedAbind_summary <-
    function(object) sprintf("Abind (along=%d)", object@along)

summary.DelayedAbind <-
    function(object, ...) .DelayedAbind_summary(object, ...)

setMethod("summary", "DelayedAbind", summary.DelayedAbind)

### Seed contract.

.get_DelayedAbind_dim <- function(x)
{
    dims <- get_dims_to_bind(x@seeds, x@along)
    combine_dims_along(dims, x@along)
}

setMethod("dim", "DelayedAbind", .get_DelayedAbind_dim)

.get_DelayedAbind_dimnames <- function(x)
{
    dims <- get_dims_to_bind(x@seeds, x@along)
    combine_dimnames_along(x@seeds, dims, x@along)
}

setMethod("dimnames", "DelayedAbind", .get_DelayedAbind_dimnames)

.extract_array_from_DelayedAbind <- function(x, index)
{
    i <- index[[x@along]]

    if (is.null(i)) {
        ## This is the easy situation.
        tmp <- lapply(x@seeds, extract_array, index)
        ## Bind the ordinary arrays in 'tmp'.
        ans <- do.call(simple_abind, c(tmp, list(along=x@along)))
        return(ans)
    }

    ## From now on 'i' is a vector of positive integers.
    dims <- get_dims_to_bind(x@seeds, x@along)
    breakpoints <- cumsum(dims[x@along, ])
    part_idx <- get_part_index(i, breakpoints)
    split_part_idx <- split_part_index(part_idx, length(breakpoints))
    FUN <- function(s) {
        index[[x@along]] <- split_part_idx[[s]]
        extract_array(x@seeds[[s]], index)
    }
    tmp <- lapply(seq_along(x@seeds), FUN)

    ## Bind the ordinary arrays in 'tmp'.
    ans <- do.call(simple_abind, c(tmp, list(along=x@along)))

    ## Reorder the rows or columns in 'ans'.
    Nindex <- vector("list", length=length(index))
    Nindex[[x@along]] <- get_rev_index(part_idx)
    subset_by_Nindex(ans, Nindex)
}

setMethod("extract_array", "DelayedAbind", .extract_array_from_DelayedAbind)

### is_sparse() and extract_sparse_array()

setMethod("is_sparse", "DelayedAbind",
    function(x)
    {
        all(vapply(x@seeds, is_sparse, logical(1), USE.NAMES=FALSE))
    }
)

### 'is_sparse(x)' is assumed to be TRUE and 'index' is assumed to
### not contain duplicates. See "extract_sparse_array() Terms of Use"
### in SparseArraySeed-class.R
setMethod("extract_sparse_array", "DelayedAbind",
    function(x, index)
    {
        stop("NOT IMPLEMENTED YET!")
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### updateObject()
###
### In DelayedArray 0.5.24, the SeedDimPicker, ConformableSeedCombiner, and
### SeedBinder classes were renamed DelayedAperm, DelayedNaryIsoOp, and
### DelayedAbind, respectively.
### DelayedArray objects serialized with DelayedArray < 0.5.24 might contain
### instances of these old classes nested in their "seed" slot so we need to
### keep them around for now.
###

setClass("SeedDimPicker", contains="DelayedAperm")
setClass("ConformableSeedCombiner", contains="DelayedNaryIsoOp")
setClass("SeedBinder", contains="DelayedAbind")

setMethod("updateObject", "DelayedOp",
    function(object, ..., verbose=FALSE)
    {
        if (.hasSlot(object, "seed")) {
            object@seed <- updateObject(object@seed, ..., verbose=verbose)
        }
        if (.hasSlot(object, "seeds")) {
            object@seeds <- lapply(object@seeds,
                function(seed) updateObject(seed, ..., verbose=verbose))
        }
        object
    }
)

setMethod("updateObject", "SeedDimPicker",
    function(object, ..., verbose=FALSE)
    {
        object <- new2("DelayedAperm", seed=object@seed,
                                       perm=object@dim_combination)
        callNextMethod()
    }
)

setMethod("updateObject", "ConformableSeedCombiner",
    function(object, ..., verbose=FALSE)
    {
        object <- new2("DelayedNaryIsoOp", seeds=object@seeds,
                                               OP=object@COMBINING_OP,
                                               Rargs=object@Rargs)
        callNextMethod()
    }
)

setMethod("updateObject", "SeedBinder",
    function(object, ..., verbose=FALSE)
    {
        class(object) <- "DelayedAbind"
        callNextMethod()
    }
)