File: SparseArraySeed-class.R

package info (click to toggle)
r-bioc-delayedarray 0.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 980 kB
  • sloc: ansic: 93; makefile: 2; sh: 1
file content (369 lines) | stat: -rw-r--r-- 13,320 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
### =========================================================================
### SparseArraySeed objects
### -------------------------------------------------------------------------


setClass("SparseArraySeed",
    contains="Array",
    representation(
        dim="integer",   # This gives us dim() for free!
        aind="matrix",   # An **integer** matrix like one returned by
                         # base::arrayInd(), that is, with 'length(dim)'
                         # columns and where each row is an n-uplet
                         # representing an "array index".
        nzdata="vector"  # A vector of length 'nrow(aind)' containing the
                         # nonzero data.
    )
)

### API:
### - Getters: dim(), length(), aind(), nzdata(), sparsity()
### - dense2sparse(), sparse2dense()
### - Based on sparse2dense(): extract_array(), as.array(), as.matrix()
### - Based on dense2sparse(): coercion to SparseArraySeed
### - Back and forth coercion between SparseArraySeed and dgCMatrix


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Validity
###

.validate_aind_slot <- function(x)
{
    x_aind <- x@aind
    if (!(is.matrix(x_aind) && typeof(x_aind) == "integer"))
        return(wmsg2("'aind' slot must be an integer matrix"))
    x_dim <- x@dim
    if (ncol(x_aind) != length(x_dim))
        return(wmsg2("'aind' slot must be a matrix with ",
                     "one column per dimension"))
    for (along in seq_along(x_dim)) {
        notok <- S4Vectors:::anyMissingOrOutside(x_aind[ , along],
                                                 1L, x_dim[[along]])
        if (notok)
            return(wmsg2("'aind' slot must contain valid indices, ",
                         "that is, indices that are not NA and are ",
                         ">= 1 and <= their corresponding dimension"))
    }
    TRUE
}

.validate_nzdata_slot <- function(x)
{
    x_nzdata <- x@nzdata
    if (!(is.vector(x_nzdata) && length(x_nzdata) == nrow(x@aind)))
        return(wmsg2("'nzdata' slot must be a vector of length ",
                     "the number of rows in the 'aind' slot"))
    TRUE
}

.validate_SparseArraySeed <- function(x)
{
    msg <- validate_dim_slot(x, "dim")
    if (!isTRUE(msg))
        return(msg)
    msg <- .validate_aind_slot(x)
    if (!isTRUE(msg))
        return(msg)
    msg <- .validate_nzdata_slot(x)
    if (!isTRUE(msg))
        return(msg)
    TRUE
}

setValidity2("SparseArraySeed", .validate_SparseArraySeed)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Getters
###

setGeneric("aind", function(x) standardGeneric("aind"))
setMethod("aind", "SparseArraySeed", function(x) x@aind)

setGeneric("nzdata", function(x) standardGeneric("nzdata"))
setMethod("nzdata", "SparseArraySeed", function(x) x@nzdata)

setGeneric("sparsity", function(x) standardGeneric("sparsity"))
setMethod("sparsity", "SparseArraySeed",
    function(x) { 1 - length(nzdata(x)) / length(x) }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Constructor
###

.normarg_nzdata <- function(nzdata, length.out)
{
    if (is.null(nzdata))
        stop(wmsg("'nzdata' cannot be NULL when 'aind' is not NULL"))
    if (!is.vector(nzdata))
        stop(wmsg("'nzdata' must be a vector"))
    ## Same logic as S4Vectors:::V_recycle().
    nzdata_len <- length(nzdata)
    if (nzdata_len == length.out)
        return(nzdata)
    if (nzdata_len > length.out && nzdata_len != 1L)
        stop(wmsg("'length(nzdata)' is greater than 'nrow(aind)'"))
    if (nzdata_len == 0L)
        stop(wmsg("'length(nzdata)' is 0 but 'nrow(aind)' is not"))
    if (length.out %% nzdata_len != 0L)
        warning(wmsg("'nrow(aind)' is not a multiple of 'length(nzdata)'"))
    rep(nzdata, length.out=length.out)
}

SparseArraySeed <- function(dim, aind=NULL, nzdata=NULL, check=TRUE)
{
    if (!is.numeric(dim))
        stop(wmsg("'dim' must be an integer vector"))
    if (!is.integer(dim))
        dim <- as.integer(dim)
    if (is.null(aind)) {
        if (!is.null(nzdata))
            stop(wmsg("'nzdata' must be NULL when 'aind' is NULL"))
        aind <- matrix(integer(0), ncol=length(dim))
        nzdata <- integer(0)
    } else {
        if (!is.matrix(aind))
            stop(wmsg("'aind' must be a matrix"))
        if (storage.mode(aind) == "double")
            storage.mode(aind) <- "integer"
        if (!is.null(dimnames(aind)))
            dimnames(aind) <- NULL
        nzdata <- .normarg_nzdata(nzdata, nrow(aind))
    }
    new2("SparseArraySeed", dim=dim, aind=aind, nzdata=nzdata, check=check)
}


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### dense2sparse() and sparse2dense()
###

### 'x' must be an array-like object that supports 1D-style subsetting
### by a matrix like one returned by base::arrayInd(), that is, by a
### matrix where each row is an n-uplet representing an array index.
### Note that DelayedArray objects don't support this kind of subsetting
### yet so dense2sparse() doesn't work on them.
### Return a SparseArraySeed object.
dense2sparse <- function(x)
{
    x_dim <- dim(x)
    if (is.null(x_dim))
        stop(wmsg("'x' must be an array-like object"))
    aind <- which(x != 0L, arr.ind=TRUE)
    SparseArraySeed(x_dim, aind, x[aind], check=FALSE)
}

### 'sas' must be a SparseArraySeed object.
### Return an ordinary array.
sparse2dense <- function(sas)
{
    if (!is(sas, "SparseArraySeed"))
        stop(wmsg("'sas' must be a SparseArraySeed object"))
    ans <- array(0L, dim=dim(sas))
    ans[aind(sas)] <- nzdata(sas)
    ans
}


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### is_sparse() and extract_sparse_array()
###

### is_sparse() detects **structural** sparsity which is a qualitative
### property of array-like object 'x'. So it doesn't look at the data in 'x'.
### It is NOT about quantitative sparsity measured by sparsity().
setGeneric("is_sparse", function(x) standardGeneric("is_sparse"))

### By default, nothing is considered sparse.
setMethod("is_sparse", "ANY", function(x) FALSE)

setMethod("is_sparse", "SparseArraySeed", function(x) TRUE)

### This is the workhorse behind read_sparse_block().
### Similar to extract_array() except that:
###   (1) The extracted array data must be returned in a SparseArraySeed
###       object. Methods should always operate on the sparse representation
###       of the data and never "expand" it, that is, never turn it into a
###       dense representation for example by doing something like
###       'dense2sparse(extract_array(x, index))'. This would defeat the
###       purpose of read_sparse_block().
###   (2) It should be called only on an array-like object 'x' for which
###       'is_sparse(x)' is TRUE.
###   (3) The subscripts in 'index' should NOT contain duplicates.
### IMPORTANT NOTE: For the sake of efficiency, (2) and (3) are NOT checked
### and are the responsibility of the user. We'll refer to (2) and (3) as
### the "extract_sparse_array() Terms of Use".
setGeneric("extract_sparse_array",
    function(x, index)
    {
        x_dim <- dim(x)
        if (is.null(x_dim))
            stop(wmsg("first argument to extract_sparse_array() ",
                      "must be an array-like object"))
        ans <- standardGeneric("extract_sparse_array")
        expected_dim <- get_Nindex_lengths(index, x_dim)
        ## TODO: Display a more user/developper-friendly error by
        ## doing something like the extract_array() generic where
        ## check_returned_array() is used to display a long and
        ## detailed error message.
        stopifnot(is(ans, "SparseArraySeed"),
                  identical(dim(ans), expected_dim))
        ans
    }
)

### IMPORTANT NOTE: The returned SparseArraySeed object is guaranteed to be
### **correct** ONLY if the subscripts in 'index' do NOT contain duplicates!
### If they contain duplicates, the correct SparseArraySeed object to return
### should contain repeated nonzero data. However, in order to keep it as
### efficient as possible, the code below does NOT repeat the nonzero data
### that corresponds to duplicates subscripts. It does not check for
### duplicates in 'index' either because this check could have a
### non-negligible cost.
### All this is OK because .extract_sparse_array_from_SparseArraySeed()
### should always be used in a context where 'index' does NOT contain
### duplicates. The only situation where 'index' CAN contain duplicates
### is when .extract_sparse_array_from_SparseArraySeed() is called by
### .extract_array_from_SparseArraySeed(), in which case the missing
### nonzero data is added later.
.extract_sparse_array_from_SparseArraySeed <- function(x, index)
{
    stopifnot(is(x, "SparseArraySeed"))
    ans_dim <- get_Nindex_lengths(index, dim(x))
    x_aind <- x@aind
    for (along in seq_along(ans_dim)) {
        i <- index[[along]]
        if (is.null(i))
            next
        x_aind[ , along] <- match(x_aind[ , along], i)
    }
    keep_idx <- which(!rowAnyNAs(x_aind))
    ans_aind <- x_aind[keep_idx, , drop=FALSE]
    ans_nzdata <- x@nzdata[keep_idx]
    SparseArraySeed(ans_dim, ans_aind, ans_nzdata, check=FALSE)
}

setMethod("extract_sparse_array", "SparseArraySeed",
    .extract_sparse_array_from_SparseArraySeed
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### extract_array()
###

.extract_array_from_SparseArraySeed <- function(x, index)
{
    sas0 <- .extract_sparse_array_from_SparseArraySeed(x, index)
    ## If the subscripts in 'index' contain duplicates, 'sas0' is
    ## "incomplete" in the sense that it does not contain the nonzero data
    ## that should have been repeated according to the duplicates in the
    ## subscripts (see IMPORTANT NOTE above).
    ans0 <- sparse2dense(sas0)
    ## We "complete" 'ans0' by repeating the nonzero data according to the
    ## duplicates present in the subscripts. Note that this is easy and cheap
    ## to do now because 'ans0' uses a dense representation (it's an ordinary
    ## array). This would be much harder to do **natively** on the
    ## SparseArraySeed form (i.e. without converting first to dense then
    ## back to sparse in the process).
    sm_index <- lapply(index,
        function(i) {
            if (is.null(i))
                return(NULL)
            sm <- match(i, i)
            if (isSequence(sm))
                return(NULL)
            sm
        })
    if (all(S4Vectors:::sapply_isNULL(sm_index)))
        return(ans0)
    subset_by_Nindex(ans0, sm_index)
}

setMethod("extract_array", "SparseArraySeed",
    .extract_array_from_SparseArraySeed
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Coercion to/from SparseArraySeed
###

### S3/S4 combo for as.array.SparseArraySeed
as.array.SparseArraySeed <- function(x, ...) sparse2dense(x)
setMethod("as.array", "SparseArraySeed", as.array.SparseArraySeed)

.from_SparseArraySeed_to_matrix <- function(x)
{
    x_dim <- dim(x)
    if (length(x_dim) != 2L)
        stop(wmsg("'x' must have exactly 2 dimensions"))
    sparse2dense(x)
}

### S3/S4 combo for as.matrix.SparseArraySeed
as.matrix.SparseArraySeed <-
    function(x, ...) .from_SparseArraySeed_to_matrix(x, ...)
setMethod("as.matrix", "SparseArraySeed", .from_SparseArraySeed_to_matrix)

### Doesn't work on DelayedArray objects at the moment. See dense2sparse()
### above.
setAs("ANY", "SparseArraySeed", function(from) dense2sparse(from))

### Going back and forth between SparseArraySeed and dgCMatrix:

.from_dgCMatrix_to_SparseArraySeed <- function(from)
{
    i <- from@i + 1L
    j <- rep.int(seq_len(ncol(from)), diff(from@p))
    aind <- cbind(i, j, deparse.level=0L)
    SparseArraySeed(dim(from), aind, from@x, check=FALSE)
}
setAs("dgCMatrix", "SparseArraySeed", .from_dgCMatrix_to_SparseArraySeed)

.from_SparseArraySeed_to_dgCMatrix <- function(from)
{
    from_dim <- dim(from)
    if (length(from_dim) != 2L)
        stop(wmsg("the ", class(from), " object to coerce to dgCMatrix ",
                  "must have exactly 2 dimensions"))
    i <- from@aind[ , 1L]
    j <- from@aind[ , 2L]
    x <- from@nzdata
    Matrix::sparseMatrix(i, j, x=x, dims=from_dim, dimnames=dimnames(from))
}
setAs("SparseArraySeed", "dgCMatrix", .from_SparseArraySeed_to_dgCMatrix)
setAs("SparseArraySeed", "sparseMatrix", .from_SparseArraySeed_to_dgCMatrix)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### aperm()
###
### Extend base::aperm() by allowing dropping and/or adding ineffective
### dimensions. See aperm2.R
###

.aperm.SparseArraySeed <- function(a, perm)
{
    a_dim <- dim(a)
    perm <- normarg_perm(perm, a_dim)
    msg <- validate_perm(perm, a_dim)
    if (!isTRUE(msg))
        stop(wmsg(msg))
    ans_dim <- a_dim[perm]
    ans_dim[is.na(perm)] <- 1L
    ans_aind <- a@aind[ , perm, drop=FALSE]
    ans_aind[ , is.na(perm)] <- 1L
    BiocGenerics:::replaceSlots(a, dim=ans_dim,
                                   aind=ans_aind,
                                   check=FALSE)
}

### S3/S4 combo for aperm.SparseArraySeed
aperm.SparseArraySeed <-
    function(a, perm, ...) .aperm.SparseArraySeed(a, perm, ...)
setMethod("aperm", "SparseArraySeed", aperm.SparseArraySeed)