1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
\name{DelayedArray-class}
\docType{class}
\alias{class:DelayedArray}
\alias{DelayedArray-class}
\alias{class:DelayedMatrix}
\alias{DelayedMatrix-class}
\alias{DelayedMatrix}
\alias{coerce,DelayedArray,DelayedMatrix-method}
\alias{coerce,DelayedMatrix,DelayedArray-method}
\alias{dim,DelayedArray-method}
\alias{dimnames,DelayedArray-method}
\alias{extract_array,DelayedArray-method}
\alias{new_DelayedArray}
\alias{DelayedArray}
\alias{DelayedArray,ANY-method}
\alias{DelayedArray,DelayedArray-method}
\alias{DelayedArray,DelayedOp-method}
\alias{class:DelayedArray1}
\alias{DelayedArray1-class}
\alias{DelayedArray1}
\alias{updateObject,DelayedArray-method}
\alias{type}
\alias{nseed}
\alias{nseed,ANY-method}
\alias{seed}
\alias{seed,DelayedOp-method}
\alias{seed<-}
\alias{seed<-,DelayedOp-method}
\alias{path}
\alias{path,DelayedArray-method}
\alias{path<-,DelayedArray-method}
\alias{aperm}
\alias{aperm.DelayedArray}
\alias{aperm,DelayedArray-method}
\alias{dim<-,DelayedArray-method}
\alias{dimnames<-,DelayedArray-method}
\alias{names,DelayedArray-method}
\alias{names<-,DelayedArray-method}
\alias{drop,DelayedArray-method}
\alias{[,DelayedArray-method}
\alias{[<-,DelayedArray-method}
\alias{coerce,DelayedArray,SparseArraySeed-method}
\alias{coerce,DelayedMatrix,dgCMatrix-method}
\alias{coerce,DelayedMatrix,sparseMatrix-method}
\alias{[[,DelayedArray-method}
\alias{show,DelayedArray-method}
\alias{c,DelayedArray-method}
\alias{splitAsList,DelayedArray-method}
\alias{split.DelayedArray}
\alias{split,DelayedArray,ANY-method}
% Internal stuff
\alias{matrixClass}
\alias{matrixClass,DelayedArray-method}
\title{DelayedArray objects}
\description{
Wrapping an array-like object (typically an on-disk object) in a
DelayedArray object allows one to perform common array operations on it
without loading the object in memory. In order to reduce memory usage and
optimize performance, operations on the object are either delayed or
executed using a block processing mechanism.
}
\usage{
DelayedArray(seed) # constructor function
seed(x) # seed getter
nseed(x) # seed counter
path(object, ...) # path getter
type(x)
}
\arguments{
\item{seed}{
An array-like object.
}
\item{x, object}{
A DelayedArray object. For \code{type()}, \code{x} can also be any
array-like object, that is, any object for which \code{dim(x)} is not
NULL.
}
\item{...}{
Additional arguments passed to methods.
}
}
\section{In-memory versus on-disk realization}{
To \emph{realize} a DelayedArray object (i.e. to trigger execution of the
delayed operations carried by the object and return the result as an
ordinary array), call \code{as.array} on it. However this realizes the
full object at once \emph{in memory} which could require too much memory
if the object is big. A big DelayedArray object is preferrably realized
\emph{on disk} e.g. by calling \code{\link[HDF5Array]{writeHDF5Array}} on
it (this function is defined in the \pkg{HDF5Array} package) or coercing it
to an \link[HDF5Array]{HDF5Array} object with \code{as(x, "HDF5Array")}.
Other on-disk backends can be supported. This uses a block processing
strategy so that the full object is not realized at once in memory. Instead
the object is processed block by block i.e. the blocks are realized in
memory and written to disk one at a time.
See \code{?\link[HDF5Array]{writeHDF5Array}} in the \pkg{HDF5Array} package
for more information about this.
}
\section{Accessors}{
DelayedArray objects support the same set of getters as ordinary arrays
i.e. \code{dim()}, \code{length()}, and \code{dimnames()}.
In addition, they support \code{seed()}, \code{nseed()}, \code{path()},
and \code{type()}.
\code{type()} is the DelayedArray equivalent of \code{typeof()} (or
\code{storage.mode()}) for ordinary arrays and vectors. Note that, for
convenience and consistency, \code{type()} also supports ordinary arrays
and vectors. It also supports any array-like object, that is, any object
\code{x} for which \code{dim(x)} is not NULL.
\code{dimnames()}, \code{seed()}, and \code{path()} also work as setters.
}
\section{Subsetting}{
A DelayedArray object can be subsetted with \code{[} like an ordinary array,
but with the following differences:
\itemize{
\item \emph{Multi-dimensional single bracket subsetting} (i.e. subsetting
of the form \code{x[i_1, i_2, ..., i_n]} with one (possibly missing)
subscript per dimension) returns a DelayedArray object where the
subsetting is actually delayed. So it's a very light operation.
One notable exception to this is when \code{drop=TRUE} and the
result has only one dimension, in which case it is returned as an
ordinary vector (atomic or list).
Note that NAs in the subscripts are not supported.
\item \emph{Linear single bracket subsetting} (a.k.a. 1D-style subsetting,
that is, subsetting of the form \code{x[i]}) only works if the
subscript \code{i} is a numeric vector at the moment. Furthermore,
\code{i} cannot contain NAs and all the indices in it must be >= 1
and <= \code{length(x)} for now. It returns an atomic vector of the
same length as \code{i}. This is NOT a delayed operation (block
processing is triggered).
}
Subsetting with \code{[[} is supported but only the \emph{linear} form
of it at the moment i.e. the \code{x[[i]]} form where \code{i} is a
\emph{single} numeric value >= 1 and <= \code{length(x)}. It is equivalent
to \code{x[i][[1]]}.
Subassignment to a DelayedArray object with \code{[<-} is also supported
like with an ordinary array, but with the following restrictions:
\itemize{
\item \emph{Multi-dimensional subassignment} (i.e. subassignment of the
form \code{x[i_1, i_2, ..., i_n] <- value} with one (possibly
missing) subscript per dimension) only accepts a replacement
value (a.k.a. right value) that is an array-like object (e.g.
ordinary array, dgCMatrix object, DelayedArray object, etc...)
or an ordinary vector (atomic or list) of length 1.
\item \emph{Linear subassignment} (a.k.a. 1D-style subassignment, that
is, subassignment of the form \code{x[i] <- value}) only works if
the subscript \code{i} is a logical DelayedArray object of the same
dimensions as \code{x} and if the replacement value is an ordinary
vector (atomic or list) of length 1.
\item \emph{Filling with a vector}, that is, subassignment of the form
\code{x[] <- v} where \code{v} is an ordinary vector (atomic or
list), is only supported if the length of the vector is a divisor
of \code{nrow(x)}.
}
These 3 forms of subassignment are implemented as delayed operations so
are very light.
Single value replacement (\code{x[[...]] <- value}) is not supported yet.
}
\seealso{
\itemize{
\item \code{\link{realize}} for realizing a DelayedArray object in memory
or on disk.
\item \link{block_processing} for more information about block processing
of an array-like object.
\item \link{DelayedArray-utils} for common operations on
\link{DelayedArray} objects.
\item \link{DelayedArray-stats} for statistical functions on
DelayedArray objects.
\item \link{DelayedMatrix-stats} for \link{DelayedMatrix} row/col
summarization.
\item \link{RleArray} objects.
\item \link[HDF5Array]{HDF5Array} objects in the \pkg{HDF5Array} package.
\item \link[S4Vectors]{DataFrame} objects in the \pkg{S4Vectors} package.
\item \link[base]{array} objects in base R.
}
}
\examples{
## ---------------------------------------------------------------------
## A. WRAP AN ORDINARY ARRAY IN A DelayedArray OBJECT
## ---------------------------------------------------------------------
a <- array(runif(1500000), dim=c(10000, 30, 5))
A <- DelayedArray(a)
A
## The seed of a DelayedArray object is **always** treated as a
## "read-only" object so will never be modified by the operations
## we perform on A:
stopifnot(identical(a, seed(A)))
type(A)
## Multi-dimensional single bracket subsetting:
m <- a[11:20 , 5, -3] # an ordinary matrix
M <- A[11:20 , 5, -3] # a DelayedMatrix object
stopifnot(identical(m, as.array(M)))
## Linear single bracket subsetting:
A[11:20]
A[A <= 1e-5]
stopifnot(identical(a[a <= 1e-5], A[A <= 1e-5]))
## Subassignment:
A[A < 0.2] <- NA
a[a < 0.2] <- NA
stopifnot(identical(a, as.array(A)))
A[2:5, 1:2, ] <- array(1:40, c(4, 2, 5))
a[2:5, 1:2, ] <- array(1:40, c(4, 2, 5))
stopifnot(identical(a, as.array(A)))
## Other operations:
crazy <- function(x) (5 * x[ , , 1] ^ 3 + 1L) * log(x[, , 2])
b <- crazy(a)
head(b)
B <- crazy(A) # very fast! (all operations are delayed)
B
cs <- colSums(b)
CS <- colSums(B)
stopifnot(identical(cs, CS))
## ---------------------------------------------------------------------
## B. WRAP A DataFrame OBJECT IN A DelayedArray OBJECT
## ---------------------------------------------------------------------
## Generate random coverage and score along an imaginary chromosome:
cov <- Rle(sample(20, 5000, replace=TRUE), sample(6, 5000, replace=TRUE))
score <- Rle(sample(100, nrun(cov), replace=TRUE), runLength(cov))
DF <- DataFrame(cov, score)
A2 <- DelayedArray(DF)
A2
seed(A2) # 'DF'
## Coercion of a DelayedMatrix object to DataFrame produces a DataFrame
## object with Rle columns:
as(A2, "DataFrame")
stopifnot(identical(DF, as(A2, "DataFrame")))
t(A2) # transposition is delayed so is very fast and memory-efficient
colSums(A2)
## ---------------------------------------------------------------------
## C. AN HDF5Array OBJECT IS A (PARTICULAR KIND OF) DelayedArray OBJECT
## ---------------------------------------------------------------------
library(HDF5Array)
A3 <- as(a, "HDF5Array") # write 'a' to an HDF5 file
A3
is(A3, "DelayedArray") # TRUE
seed(A3) # an HDF5ArraySeed object
B3 <- crazy(A3) # very fast! (all operations are delayed)
B3 # not an HDF5Array object anymore because
# now it carries delayed operations
CS3 <- colSums(B3)
stopifnot(identical(cs, CS3))
## ---------------------------------------------------------------------
## D. PERFORM THE DELAYED OPERATIONS
## ---------------------------------------------------------------------
as(B3, "HDF5Array") # "realize" 'B3' on disk
## If this is just an intermediate result, you can either keep going
## with B3 or replace it with its "realized" version:
B3 <- as(B3, "HDF5Array") # no more delayed operations on new 'B3'
seed(B3)
path(B3)
## For convenience, realize() can be used instead of explicit coercion.
## The current "realization backend" controls where realization
## happens e.g. in memory if set to NULL or in an HDF5 file if set
## to "HDF5Array":
D <- cbind(B3, exp(B3))
D
setRealizationBackend("HDF5Array")
D <- realize(D)
D
## See '?realize' for more information about "realization backends".
## ---------------------------------------------------------------------
## E. MODIFY THE PATH OF A DelayedArray OBJECT
## ---------------------------------------------------------------------
## This can be useful if the file containing the array data is on a
## shared partition but the exact path to the partition depends on the
## machine from which the data is being accessed.
## For example:
\dontrun{
library(HDF5Array)
A <- HDF5Array("/path/to/lab_data/my_precious_data.h5")
path(A)
## Operate on A...
## Now A carries delayed operations.
## Make sure path(A) still works:
path(A)
## Save A:
save(A, file="A.rda")
## A.rda should be small (it doesn't contain the array data).
## Send it to a co-worker that has access to my_precious_data.h5.
## Co-worker loads it:
load("A.rda")
path(A)
## A is broken because path(A) is incorrect for co-worker:
A # error!
## Co-worker fixes the path (in this case this is better done using the
## dirname() setter rather than the path() setter):
dirname(A) <- "E:/other/path/to/lab_data"
## A "works" again:
A
}
## ---------------------------------------------------------------------
## F. WRAP A SPARSE MATRIX IN A DelayedArray OBJECT
## ---------------------------------------------------------------------
\dontrun{
library(Matrix)
M <- 75000L
N <- 1800L
p <- sparseMatrix(sample(M, 9000000, replace=TRUE),
sample(N, 9000000, replace=TRUE),
x=runif(9000000), dims=c(M, N))
P <- DelayedArray(p)
P
p2 <- as(P, "sparseMatrix")
stopifnot(identical(p, p2))
## The following is based on the following post by Murat Tasan on the
## R-help mailing list:
## https://stat.ethz.ch/pipermail/r-help/2017-May/446702.html
## As pointed out by Murat, the straight-forward row normalization
## directly on sparse matrix 'p' would consume too much memory:
row_normalized_p <- p / rowSums(p^2) # consumes too much memory
## because the rowSums() result is being recycled (appropriately) into a
## *dense* matrix with dimensions equal to dim(p).
## Murat came up with the following solution that is very fast and
## memory-efficient:
row_normalized_p1 <- Diagonal(x=1/sqrt(Matrix::rowSums(p^2))) %*% p
## With a DelayedArray object, the straight-forward approach uses a
## block processing strategy behind the scene so it doesn't consume
## too much memory.
## First, let's see the block processing in action:
DelayedArray:::set_verbose_block_processing(TRUE)
## and check the automatic block size:
getAutoBlockSize()
row_normalized_P <- P / sqrt(DelayedArray::rowSums(P^2))
## Increasing the block size increases the speed but also memory usage:
setAutoBlockSize(2e8)
row_normalized_P2 <- P / sqrt(DelayedArray::rowSums(P^2))
stopifnot(all.equal(row_normalized_P, row_normalized_P2))
## Back to sparse representation:
DelayedArray:::set_verbose_block_processing(FALSE)
row_normalized_p2 <- as(row_normalized_P, "sparseMatrix")
stopifnot(all.equal(row_normalized_p1, row_normalized_p2))
setAutoBlockSize()
}
}
\keyword{classes}
\keyword{methods}
|