File: RealizationSink-class.Rd

package info (click to toggle)
r-bioc-delayedarray 0.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 980 kB
  • sloc: ansic: 93; makefile: 2; sh: 1
file content (222 lines) | stat: -rw-r--r-- 7,522 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
\name{RealizationSink}

\alias{class:RealizationSink}
\alias{RealizationSink-class}

\alias{close,RealizationSink-method}

\alias{class:arrayRealizationSink}
\alias{arrayRealizationSink-class}

\alias{dim,arrayRealizationSink-method}
\alias{write_block,arrayRealizationSink-method}
\alias{coerce,arrayRealizationSink,DelayedArray-method}

\alias{supportedRealizationBackends}
\alias{getRealizationBackend}
\alias{setRealizationBackend}

\alias{RealizationSink}

\title{RealizationSink objects}

\description{
  Get or set the \emph{realization backend} for the current session with
  \code{getRealizationBackend} or \code{setRealizationBackend}.

  Advanced users: Create a RealizationSink object with the backend-agnostic
  \code{RealizationSink()} constructor. Use this object to write an 
  array-like object block by block to disk (or to memory).
}

\usage{
supportedRealizationBackends()
getRealizationBackend()
setRealizationBackend(BACKEND=NULL)

RealizationSink(dim, dimnames=NULL, type="double")
}

\arguments{
   \item{BACKEND}{
     \code{NULL} (the default), or a single string specifying the name of
     a \emph{realization backend}.
   }
   \item{dim}{
     The dimensions (specified as an integer vector) of the RealizationSink
     object to create.
   }
   \item{dimnames}{
     The dimnames (specified as a list of character vectors or NULLs) of
     the RealizationSink object to create.
   }
   \item{type}{
     The type of the data that will be written to the RealizationSink
     object to create.
   }
}

\details{
  The \emph{realization backend} controls where/how realization happens e.g.
  as an ordinary array if set to \code{NULL}, as an \link{RleArray} object
  if set to \code{"RleArray"}, or as an \link[HDF5Array]{HDF5Array} object
  if set to \code{"HDF5Array"}.
}

\value{
  \code{supportedRealizationBackends}: A data frame with 1 row per
  supported \emph{realization backend}.

  \code{getRealizationBackend}: \code{NULL} or a single string specifying
  the name of the \emph{realization backend} currently in use.

  \code{RealizationSink}: A RealizationSink object for the current
  \emph{realization backend}.
}

\seealso{
  \itemize{
    \item \code{\link{write_block}}.

    \item \code{\link{blockGrid}} to define grids to use in the context
          of block processing of array-like objects.

    \item \link{DelayedArray} objects.

    \item \link{RleArray} objects.

    \item \link[HDF5Array]{HDF5Array} objects in the \pkg{HDF5Array} package.

    \item \link[HDF5Array]{HDF5-dump-management} in the \pkg{HDF5Array}
          package to control the location and physical properties of
          automatically created HDF5 datasets.

    \item \link[base]{array} objects in base R.
  }
}

\examples{
## ---------------------------------------------------------------------
## A. supportedRealizationBackends() AND FAMILY
## ---------------------------------------------------------------------
supportedRealizationBackends()
getRealizationBackend()  # backend is set to NULL

setRealizationBackend("HDF5Array")
supportedRealizationBackends()
getRealizationBackend()  # backend is set to "HDF5Array"

## ---------------------------------------------------------------------
## B. A SIMPLE (AND VERY ARTIFICIAL) RealizationSink() EXAMPLE
## ---------------------------------------------------------------------
getHDF5DumpChunkLength()
setHDF5DumpChunkLength(500L)
getHDF5DumpChunkShape()

sink <- RealizationSink(c(120L, 50L))
dim(sink)
chunkdim(sink)

grid <- blockGrid(sink, block.length=600)
for (b in seq_along(grid)) {
    viewport <- grid[[b]]
    block <- 101 * b + runif(length(viewport))
    dim(block) <- dim(viewport)
    write_block(sink, viewport, block)
}

## Always close the RealizationSink object when you are done writing to
## it and before coercing it to DelayedArray:
close(sink)
A <- as(sink, "DelayedArray")
A

## ---------------------------------------------------------------------
## C. AN ADVANCED EXAMPLE OF USER-IMPLEMENTED BLOCK PROCESSING USING
##    colGrid() AND A REALIZATION SINK
## ---------------------------------------------------------------------
## Say we have 2 matrices with the same number of columns. Each column
## represents a biological sample:
library(HDF5Array)
R <- as(matrix(runif(75000), ncol=1000), "HDF5Array")   # 75 rows
G <- as(matrix(runif(250000), ncol=1000), "HDF5Array")  # 250 rows

## Say we want to compute the matrix U obtained by applying the same
## binary functions FUN() to all samples i.e. U is defined as:
##
##   U[ , j] <- FUN(R[ , j], G[ , j]) for 1 <= j <= 1000
##
## Note that FUN() should return a vector of constant length, say 200,
## so U will be a 200x1000 matrix. A naive implementation would be:
##
##   pFUN <- function(r, g) {
##       stopifnot(ncol(r) == ncol(g))  # sanity check
##       sapply(seq_len(ncol(r)), function(j) FUN(r[ , j], g[ , j]))
##   }
##
## But because U is going to be too big to fit in memory, we can't
## just do pFUN(R, G). So we want to compute U block by block and
## write the blocks to disk as we go. The blocks will be made of full
## columns. Also since we need to walk on 2 matrices at the same time
## (R and G), we can't use blockApply() or blockReduce() so we'll use
## a "for" loop.

## Before we can write the "for" loop, we need 4 things:

## 1) Two grids of blocks, one on R and one on G. The blocks in the
##    2 grids must contain the same number of columns. We arbitrarily
##    choose to use blocks of 150 columns:
R_grid <- colGrid(R, ncol=150)
G_grid <- colGrid(G, ncol=150)

## 2) The function pFUN(). It will take 2 blocks as input, 1 from R
##    and 1 from G, apply FUN() to all the samples in the blocks,
##    and return a matrix with one columns per sample:
pFUN <- function(r, g) {
    stopifnot(ncol(r) == ncol(g))  # sanity check
    ## Return a matrix with 200 rows with random values. Completely
    ## artificial sorry. A realistic example would actually need to
    ## apply the same binary function to r[ ,j] and g[ , j] for
    ## 1 <= j <= ncol(r).
    matrix(runif(200 * ncol(r)), nrow=200)
}

## 3) A RealizationSink object where to write the matrices returned
##    by pFUN() as we go. Note that instead of creating a realization
##    sink by calling a backend-specific sink constructor (e.g.
##    HDF5Array:::HDF5RealizationSink), we use the backend-agnostic
##    constructor RealizationSink() and set the current realization
##    backend to HDF5:

setRealizationBackend("HDF5Array")
U_sink <- RealizationSink(c(200L, 1000L))

## 4) Finally, we create a grid on U_sink with blocks that contain the
##    same number of columns as the corresponding blocks in R and G:

U_grid <- colGrid(U_sink, ncol=150)

## Note that the 3 grids should have the same number of blocks:
stopifnot(length(U_grid) == length(R_grid))
stopifnot(length(U_grid) == length(G_grid))

## Now we can procede. We write a loop where we walk on R and G at
## the same time, block by block, apply pFUN(), and write the output
## of pFUN() to U_sink:
for (b in seq_along(U_grid)) {
    R_block <- read_block(R, R_grid[[b]])
    G_block <- read_block(G, G_grid[[b]])
    U_block <- pFUN(R_block, G_block)
    write_block(U_sink, U_grid[[b]], U_block)
}

close(U_sink)
U <- as(U_sink, "DelayedArray")

## A note about parallelization: even though concurrent block reading
## from the same object is supported, concurrent writing to a sink is
## not supported yet. So the above code cannot be parallelized at the
## moment.
}
\keyword{utilities}