File: SparseArraySeed-class.Rd

package info (click to toggle)
r-bioc-delayedarray 0.8.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 980 kB
  • sloc: ansic: 93; makefile: 2; sh: 1
file content (201 lines) | stat: -rw-r--r-- 5,359 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
\name{SparseArraySeed-class}
\docType{class}

\alias{class:SparseArraySeed}
\alias{SparseArraySeed-class}
\alias{SparseArraySeed}

\alias{aind}
\alias{aind,SparseArraySeed-method}
\alias{nzdata}
\alias{nzdata,SparseArraySeed-method}
\alias{sparsity}
\alias{sparsity,SparseArraySeed-method}

\alias{dense2sparse}
\alias{sparse2dense}

\alias{is_sparse,ANY-method}
\alias{is_sparse,SparseArraySeed-method}
\alias{extract_sparse_array}
\alias{extract_sparse_array,SparseArraySeed-method}

\alias{extract_array,SparseArraySeed-method}

\alias{as.array.SparseArraySeed}
\alias{as.array,SparseArraySeed-method}

\alias{as.matrix.SparseArraySeed}
\alias{as.matrix,SparseArraySeed-method}

\alias{coerce,ANY,SparseArraySeed-method}

\alias{coerce,dgCMatrix,SparseArraySeed-method}
\alias{coerce,SparseArraySeed,dgCMatrix-method}
\alias{coerce,SparseArraySeed,sparseMatrix-method}

\alias{aperm.SparseArraySeed}
\alias{aperm,SparseArraySeed-method}

\title{SparseArraySeed objects}

\description{
  SparseArraySeed objects are used internally to support block processing
  of array-like objects.
}

\usage{
## Constructor function:
SparseArraySeed(dim, aind=NULL, nzdata=NULL, check=TRUE)

## Getters (in addition to dim() and length()):
aind(x)
nzdata(x)
sparsity(x)

## Two low-level utilities:
dense2sparse(x)
sparse2dense(sas)
}

\arguments{
  \item{dim}{
    The dimensions (specified as an integer vector) of the
    SparseArraySeed object to create.
  }
  \item{aind}{
    A matrix containing the array indices of the nonzero data.

    This must be an integer matrix like one returned by
    \code{base::\link[base]{arrayInd}}, that is, with \code{length(dim)}
    columns and where each row is an n-uplet representing an array index.
  }
  \item{nzdata}{
    A vector of length \code{nrow(aind)} containing the nonzero data.
  }
  \item{check}{
    Should the object be validated upon construction?
  }
  \item{x}{
    A SparseArraySeed object for the \code{aind}, \code{nzdata}, and
    \code{sparsity} getters.

    An array-like object for \code{dense2sparse}.
  }
  \item{sas}{
    A SparseArraySeed object.
  }
}

\value{
  \itemize{
    \item For \code{SparseArraySeed()}: A SparseArraySeed instance.

    \item For \code{aind()}: The matrix containing the array indices of the
          nonzero data.

    \item For \code{nzdata()}: The vector of nonzero data.

    \item For \code{sparsity()}: The number of zero-valued elements
          in the implicit array divided by the total number of array
          elements (a.k.a. the length of the array).

    \item For \code{dense2sparse()}: A SparseArraySeed instance.

    \item For \code{sparse2dense()}: An ordinary array.
  }
}

\seealso{
  \itemize{
    \item The \code{\link{read_sparse_block}} function.

    \item \link{block_processing} for more information about block processing
          of an array-like object.

    \item \code{\link{extract_array}}.

    \item \link{DelayedArray} objects.

    \item \code{\link[base]{arrayInd}} in the \pkg{base} package.

    \item \link[base]{array} objects in base R.
  }
}

\examples{
## ---------------------------------------------------------------------
## EXAMPLE 1
## ---------------------------------------------------------------------
aind1 <- rbind(c(2,4,3), c(2,1,3), c(5,4,3), c(5,3,3),
               c(5,4,1), c(5,1,1), c(5,4,2), c(5,4,1))
nzdata1 <- 11.11 * seq_len(nrow(aind1))
sas1 <- SparseArraySeed(5:3, aind1, nzdata1)

dim(sas1)        # the dimensions of the implicit array
length(sas1)     # the length of the implicit array
aind(sas1)
nzdata(sas1)
sparsity(sas1)

sparse2dense(sas1)
as.array(sas1)   # same as sparse2dense(sas1)

\dontrun{
as.matrix(sas1)  # error!
}
## ---------------------------------------------------------------------
## EXAMPLE 2
## ---------------------------------------------------------------------
m2 <- matrix(c(5:-2, rep.int(c(0L, 99L), 11)), ncol=6)
sas2 <- dense2sparse(m2)
dim(sas2)
length(sas2)
aind(sas2)
nzdata(sas2)
sparsity(sas2)

stopifnot(identical(sparse2dense(sas2), m2))

as.matrix(sas2)  # same as sparse2dense(sas2)

t(sas2)
stopifnot(identical(as.matrix(t(sas2)), t(as.matrix(sas2))))

## Go back and forth between SparseArraySeed and dgCMatrix objects:
M2 <- as(sas2, "dgCMatrix")
stopifnot(identical(M2, as(m2, "dgCMatrix")))

sas2b <- as(M2, "SparseArraySeed")
## 'sas2b' is the same as 'sas2' except that
## 'nzdata(sas2b)' is of type numeric instead of integer:
all.equal(sas2b, sas2)
typeof(nzdata(sas2b))  # numeric
typeof(nzdata(sas2))   # integer

## ---------------------------------------------------------------------
## SEED CONTRACT
## ---------------------------------------------------------------------
## SparseArraySeed objects comply with the "seed contract".
## In particular they support extract_array():
extract_array(sas1, list(c(5, 3:2, 5), NULL, 3))

## See '?extract_array' for more information about the "seed contract".

## This means that they can be wrapped in a DelayedArray object:
A1 <- DelayedArray(sas1)
A1

## A big very sparse DelayedMatrix object:
aind3 <- cbind(sample(25000, 600000, replace=TRUE),
               sample(195000, 600000, replace=TRUE))
nzdata3 <- runif(600000)
sas3 <- SparseArraySeed(c(25000, 195000), aind3, nzdata3)
sparsity(sas3)

M3 <- DelayedArray(sas3)
M3
colSums(M3[ , 1:20])
}
\keyword{classes}
\keyword{methods}