1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
\name{SparseArraySeed-class}
\docType{class}
\alias{class:SparseArraySeed}
\alias{SparseArraySeed-class}
\alias{SparseArraySeed}
\alias{aind}
\alias{aind,SparseArraySeed-method}
\alias{nzdata}
\alias{nzdata,SparseArraySeed-method}
\alias{sparsity}
\alias{sparsity,SparseArraySeed-method}
\alias{dense2sparse}
\alias{sparse2dense}
\alias{is_sparse,ANY-method}
\alias{is_sparse,SparseArraySeed-method}
\alias{extract_sparse_array}
\alias{extract_sparse_array,SparseArraySeed-method}
\alias{extract_array,SparseArraySeed-method}
\alias{as.array.SparseArraySeed}
\alias{as.array,SparseArraySeed-method}
\alias{as.matrix.SparseArraySeed}
\alias{as.matrix,SparseArraySeed-method}
\alias{coerce,ANY,SparseArraySeed-method}
\alias{coerce,dgCMatrix,SparseArraySeed-method}
\alias{coerce,SparseArraySeed,dgCMatrix-method}
\alias{coerce,SparseArraySeed,sparseMatrix-method}
\alias{aperm.SparseArraySeed}
\alias{aperm,SparseArraySeed-method}
\title{SparseArraySeed objects}
\description{
SparseArraySeed objects are used internally to support block processing
of array-like objects.
}
\usage{
## Constructor function:
SparseArraySeed(dim, aind=NULL, nzdata=NULL, check=TRUE)
## Getters (in addition to dim() and length()):
aind(x)
nzdata(x)
sparsity(x)
## Two low-level utilities:
dense2sparse(x)
sparse2dense(sas)
}
\arguments{
\item{dim}{
The dimensions (specified as an integer vector) of the
SparseArraySeed object to create.
}
\item{aind}{
A matrix containing the array indices of the nonzero data.
This must be an integer matrix like one returned by
\code{base::\link[base]{arrayInd}}, that is, with \code{length(dim)}
columns and where each row is an n-uplet representing an array index.
}
\item{nzdata}{
A vector of length \code{nrow(aind)} containing the nonzero data.
}
\item{check}{
Should the object be validated upon construction?
}
\item{x}{
A SparseArraySeed object for the \code{aind}, \code{nzdata}, and
\code{sparsity} getters.
An array-like object for \code{dense2sparse}.
}
\item{sas}{
A SparseArraySeed object.
}
}
\value{
\itemize{
\item For \code{SparseArraySeed()}: A SparseArraySeed instance.
\item For \code{aind()}: The matrix containing the array indices of the
nonzero data.
\item For \code{nzdata()}: The vector of nonzero data.
\item For \code{sparsity()}: The number of zero-valued elements
in the implicit array divided by the total number of array
elements (a.k.a. the length of the array).
\item For \code{dense2sparse()}: A SparseArraySeed instance.
\item For \code{sparse2dense()}: An ordinary array.
}
}
\seealso{
\itemize{
\item The \code{\link{read_sparse_block}} function.
\item \link{block_processing} for more information about block processing
of an array-like object.
\item \code{\link{extract_array}}.
\item \link{DelayedArray} objects.
\item \code{\link[base]{arrayInd}} in the \pkg{base} package.
\item \link[base]{array} objects in base R.
}
}
\examples{
## ---------------------------------------------------------------------
## EXAMPLE 1
## ---------------------------------------------------------------------
aind1 <- rbind(c(2,4,3), c(2,1,3), c(5,4,3), c(5,3,3),
c(5,4,1), c(5,1,1), c(5,4,2), c(5,4,1))
nzdata1 <- 11.11 * seq_len(nrow(aind1))
sas1 <- SparseArraySeed(5:3, aind1, nzdata1)
dim(sas1) # the dimensions of the implicit array
length(sas1) # the length of the implicit array
aind(sas1)
nzdata(sas1)
sparsity(sas1)
sparse2dense(sas1)
as.array(sas1) # same as sparse2dense(sas1)
\dontrun{
as.matrix(sas1) # error!
}
## ---------------------------------------------------------------------
## EXAMPLE 2
## ---------------------------------------------------------------------
m2 <- matrix(c(5:-2, rep.int(c(0L, 99L), 11)), ncol=6)
sas2 <- dense2sparse(m2)
dim(sas2)
length(sas2)
aind(sas2)
nzdata(sas2)
sparsity(sas2)
stopifnot(identical(sparse2dense(sas2), m2))
as.matrix(sas2) # same as sparse2dense(sas2)
t(sas2)
stopifnot(identical(as.matrix(t(sas2)), t(as.matrix(sas2))))
## Go back and forth between SparseArraySeed and dgCMatrix objects:
M2 <- as(sas2, "dgCMatrix")
stopifnot(identical(M2, as(m2, "dgCMatrix")))
sas2b <- as(M2, "SparseArraySeed")
## 'sas2b' is the same as 'sas2' except that
## 'nzdata(sas2b)' is of type numeric instead of integer:
all.equal(sas2b, sas2)
typeof(nzdata(sas2b)) # numeric
typeof(nzdata(sas2)) # integer
## ---------------------------------------------------------------------
## SEED CONTRACT
## ---------------------------------------------------------------------
## SparseArraySeed objects comply with the "seed contract".
## In particular they support extract_array():
extract_array(sas1, list(c(5, 3:2, 5), NULL, 3))
## See '?extract_array' for more information about the "seed contract".
## This means that they can be wrapped in a DelayedArray object:
A1 <- DelayedArray(sas1)
A1
## A big very sparse DelayedMatrix object:
aind3 <- cbind(sample(25000, 600000, replace=TRUE),
sample(195000, 600000, replace=TRUE))
nzdata3 <- runif(600000)
sas3 <- SparseArraySeed(c(25000, 195000), aind3, nzdata3)
sparsity(sas3)
M3 <- DelayedArray(sas3)
M3
colSums(M3[ , 1:20])
}
\keyword{classes}
\keyword{methods}
|