1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
\name{showtree}
% showtree()
\alias{showtree}
\alias{show,DelayedOp-method}
% simplify()
\alias{simplify}
\alias{simplify,ANY-method}
\alias{simplify,DelayedSubset-method}
\alias{simplify,DelayedAperm-method}
\alias{simplify,DelayedUnaryIsoOpStack-method}
\alias{simplify,DelayedUnaryIsoOpWithArgs-method}
\alias{simplify,DelayedSubassign-method}
\alias{simplify,DelayedDimnames-method}
\alias{simplify,DelayedArray-method}
% contentIsPristine()
\alias{contentIsPristine}
% netSubsetAndAperm()
\alias{netSubsetAndAperm}
\alias{netSubsetAndAperm,ANY-method}
\alias{netSubsetAndAperm,DelayedArray-method}
\title{Visualize, simplify, and inspect a tree of delayed operations}
\description{
NOTE: The tools documented in this man page are primarily intended for
developers. End users of \link{DelayedArray} objects will typically not
need them.
\code{showtree} can be used to visualize the tree of delayed operations
carried by a \link{DelayedArray} object.
\code{simplify} can be used to simplify this tree.
\code{contentIsPristine} can be used to know whether the operations in
this tree leave the values of the array elements intact or not.
\code{netSubsetAndAperm} returns an object that represents the \emph{net
subsetting} and \emph{net dimension rearrangement} of all the operations
in this tree.
}
\usage{
showtree(x, show.node.dim=TRUE)
simplify(x, incremental=FALSE)
contentIsPristine(x)
netSubsetAndAperm(x, as.DelayedOp=FALSE)
}
\arguments{
\item{x}{
Typically a \link{DelayedArray} object but can also be a \link{DelayedOp}
object.
Additionally \code{showtree} accepts a list where each element is a
\link{DelayedArray} or \link{DelayedOp} object.
}
\item{show.node.dim}{
\code{TRUE} or \code{FALSE}. If \code{TRUE} (the default), the nodes
dimensions and data type are displayed.
}
\item{incremental}{
For internal use.
}
\item{as.DelayedOp}{
\code{TRUE} or \code{FALSE}. Control the form of the returned object.
See details below.
}
}
\details{
\code{netSubsetAndAperm} is only supported on a \link{DelayedArray}
object \code{x} with a single seed i.e. if \code{nseed(x) == 1}.
The mapping between the elements of \code{x} and the elements of its seed
is affected by the following delayed operations carried by \code{x}:
\code{[}, \code{drop()}, and \code{aperm()}.
\code{x} can carry any number of each of these operations in any order but
their net result can always be described by a \emph{net subsetting}
followed by a \emph{net dimension rearrangement}.
\code{netSubsetAndAperm(x)} returns an object that represents the
\emph{net subsetting} and \emph{net dimension rearrangement}.
The \code{as.DelayedOp} argument controls in what form this object should
be returned:
\itemize{
\item If \code{as.DelayedOp} is \code{FALSE} (the default), the returned
object is a list of subscripts that describes the \emph{net
subsetting}. The list contains one subscript per dimension in the
seed. Each subscript can be either a vector of positive integers
or a \code{NULL}. A \code{NULL} indicates a \emph{missing subscript}.
In addition, if \code{x} carries delayed operations that rearrange
its dimensions (i.e. operations that drop and/or permute some of
the original dimensions), the \emph{net dimension rearrangement}
is described in a \code{dimmap} attribute added to the list. This
attribute is an integer vector parallel to \code{dim(x)} that
reports how the dimensions of \code{x} are mapped to the dimensions
of its seed.
\item If \code{as.DelayedOp} is \code{TRUE}, the returned object is a
linear tree with 2 \link{DelayedOp} nodes and a leaf node. The
leaf node is the seed of \code{x}. Walking the tree from the seed,
the 2 \link{DelayedOp} nodes are of type \link{DelayedSubset} and
\link{DelayedAperm}, in that order (this reflects the order in
which the operations apply). More precisely, the returned object
is a \link{DelayedAperm} object with one child (the
\link{DelayedSubset} object), and one grandchid (the seed of
\code{x}).
The \link{DelayedSubset} and \link{DelayedAperm} nodes represent
the \emph{net subsetting} and \emph{net dimension rearrangement},
respectively. Either or both of them can be a no-op.
}
Note that the returned object describes how the elements of \code{x} map
to their corresponding element in \code{seed(x)}.
}
\value{
The simplified object for \code{simplify}.
\code{TRUE} or \code{FALSE} for \code{contentIsPristine}.
An ordinary list (possibly with the \code{dimmap} attribute on it) for
\code{netSubsetAndAperm}. Unless \code{as.DelayedOp} is set to \code{TRUE},
in which case a \link{DelayedAperm} object is returned (see Details
section above for more information).
}
\seealso{
\itemize{
\item \link{DelayedArray} objects.
\item \link{DelayedOp} objects.
}
}
\examples{
## ---------------------------------------------------------------------
## showtree()
## ---------------------------------------------------------------------
m1 <- matrix(runif(150), nrow=15, ncol=10)
M1 <- DelayedArray(m1)
## By default, the tree of delayed operations carried by a DelayedArray
## object gets simplified each time a delayed operation is added to it.
## This can be disabled via a global option:
options(DelayedArray.simplify=FALSE)
M2 <- log(t(M1[5:1, c(TRUE, FALSE)] + 10))[-1, ]
showtree(M2)
## Note that as part of the simplification process, some operations
## can be reordered:
options(DelayedArray.simplify=TRUE)
M2 <- log(t(M1[5:1, c(TRUE, FALSE)] + 10))[-1, ]
showtree(M2)
## In the above example, the tree is linear i.e. all the operations
## are represented by unary nodes. The simplest way to know if a
## tree is linear is by counting its leaves with nseed():
nseed(M2) # only 1 leaf means the tree is linear
options(DelayedArray.simplify=FALSE)
dimnames(M1) <- list(letters[1:15], LETTERS[1:10])
showtree(M1)
m2 <- matrix(1:20, nrow=10)
Y <- cbind(t(M1[ , 10:1]), DelayedArray(m2), M1[6:15, "A", drop=FALSE])
showtree(Y)
showtree(Y, show.node.dim=FALSE)
nseed(Y) # the tree is not linear
Z <- t(Y[10:1, ])[1:15, ] + 0.4 * M1
showtree(Z)
nseed(Z)
Z@seed@seeds
Z@seed@seeds[[2]]@seed # reaching to M1
Z@seed@seeds[[1]]@seed@seed@seed # reaching to Y
## ---------------------------------------------------------------------
## contentIsPristine()
## ---------------------------------------------------------------------
a <- array(1:120, c(4, 5, 2))
A <- DelayedArray(a)
stopifnot(contentIsPristine(A))
stopifnot(contentIsPristine(A[1, , ]))
stopifnot(contentIsPristine(t(A[1, , ])))
stopifnot(contentIsPristine(cbind(A[1, , ], A[2, , ])))
dimnames(A) <- list(LETTERS[1:4], letters[1:5], NULL)
stopifnot(contentIsPristine(A))
contentIsPristine(log(A)) # FALSE
contentIsPristine(A - 11:14) # FALSE
contentIsPristine(A * A) # FALSE
## ---------------------------------------------------------------------
## netSubsetAndAperm()
## ---------------------------------------------------------------------
a <- array(1:120, c(4, 5, 2))
M <- aperm(DelayedArray(a)[ , -1, ] / 100)[ , , 3] + 99:98
M
showtree(M)
netSubsetAndAperm(M) # 1st dimension was dropped, 2nd and 3rd
# dimension were permuted (transposition)
op2 <- netSubsetAndAperm(M, as.DelayedOp=TRUE)
op2 # 2 nested delayed operations
op1 <- op2@seed
class(op1) # DelayedSubset
class(op2) # DelayedAperm
op1@index
op2@perm
DelayedArray(op2) # same as M from a [, drop(), and aperm() point of
# view but the individual array elements are now
# reset to their original values i.e. to the values
# they have in the seed
stopifnot(contentIsPristine(DelayedArray(op2)))
## A simple function that returns TRUE if a DelayedArray object carries
## no "net subsetting" and no "net dimension rearrangement":
is_aligned_with_seed <- function(x)
{
if (nseed(x) != 1L)
return(FALSE)
op2 <- netSubsetAndAperm(x, as.DelayedOp=TRUE)
op1 <- op2@seed
is_noop(op1) && is_noop(op2)
}
M <- DelayedArray(a[ , , 1])
is_aligned_with_seed(log(M + 11:14) > 3) # TRUE
is_aligned_with_seed(M[4:1, ]) # FALSE
is_aligned_with_seed(M[4:1, ][4:1, ]) # TRUE
is_aligned_with_seed(t(M)) # FALSE
is_aligned_with_seed(t(t(M))) # TRUE
is_aligned_with_seed(t(0.5 * t(M[4:1, ])[ , 4:1])) # TRUE
options(DelayedArray.simplify=TRUE)
}
\keyword{methods}
|