File: demixt.html

package info (click to toggle)
r-bioc-demixt 1.14.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,300 kB
  • sloc: ansic: 1,591; cpp: 1,209; makefile: 5; sh: 4
file content (844 lines) | stat: -rw-r--r-- 621,972 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />



<title>A Vignette for DeMixT</title>


<style type="text/css">
  code{white-space: pre-wrap;}
  span.smallcaps{font-variant: small-caps;}
  span.underline{text-decoration: underline;}
  div.column{display: inline-block; vertical-align: top; width: 50%;}
  div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
  ul.task-list{list-style: none;}
    </style>



<style type="text/css">
  code {
    white-space: pre;
  }
  .sourceCode {
    overflow: visible;
  }
</style>
<style type="text/css" data-origin="pandoc">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
  { position: relative; left: -4em; }
pre.numberSource a.sourceLine::before
  { content: attr(title);
    position: relative; left: -1em; text-align: right; vertical-align: baseline;
    border: none; pointer-events: all; display: inline-block;
    -webkit-touch-callout: none; -webkit-user-select: none;
    -khtml-user-select: none; -moz-user-select: none;
    -ms-user-select: none; user-select: none;
    padding: 0 4px; width: 4em;
    color: #aaaaaa;
  }
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa;  padding-left: 4px; }
div.sourceCode
  {  }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */

</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    var j = 0;
    while (j < rules.length) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
        j++;
        continue;
      }
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') {
        j++;
        continue;
      }
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">A Vignette for DeMixT</h1>
<h4 class="date">Last updated: 2022-11-01</h4>



<div style="text-align: justify">



<div id="introduction" class="section level1">
<h1>1. Introduction</h1>
<p>Transcriptomic deconvolution in cancer and other heterogeneous tissues remains challenging. Available methods lack the ability to estimate both component-specific proportions and expression profiles for individual samples. We develop a three-component deconvolution model, DeMixT, for expression data from a mixture of cancerous tissues, infiltrating immune cells and tumor microenvironment. DeMixT is a software package that performs deconvolution on transcriptome data from a mixture of two or three components.</p>
<p>DeMixT is a frequentist-based method and fast in yielding accurate estimates of cell proportions and compart-ment-specific expression profiles for two-component three-component deconvolution problem. Our method promises to provide deeper insight into cancer biomarkers and assist in the development of novel prognostic markers and therapeutic strategies.</p>
<p>The function DeMixT is designed to finish the whole pipeline of deconvolution for two or three components. The newly added DeMixT_GS function is designed to estimates the proportions of mixed samples for each mixing component based on a new approach to select genes more effectively that utilizes profile likelihood. DeMixT_DE function is designed to estimate the proportions of all mixed samples for each mixing component based on the gene differential expressions to select genes. DeMixT_S2 function is designed to estimate the component-specific deconvolved expressions of individual mixed samples for a given set of genes.</p>
</div>
<div id="feature-description" class="section level1">
<h1>2 Feature Description</h1>
<p>The DeMixT R-package builds the transcriptomic deconvolution with a couple of novel features into R-based standard analysis pipeline through Bioconductor. DeMixT showed high accuracy and efficiency from our designed experiment. Hence, DeMixT can be considered as an important step towards linking tumor transcriptomic data with clinical outcomes.</p>
<p>Different from most previous computational deconvolution methods, DeMixT has integrated new features for the deconvolution with more than 2 components.</p>
<p><strong>Joint estimation</strong>: jointly estimate component proportions and expression profiles for individual samples by requiring reference samples instead of reference genes; For the three-component deconvolution considering immune infiltration, it provides a comprehensive view of tumor-stroma-immune transcriptional dynamics, as compared to methods that address only immune subtypes within the immune component, in each tumor sample.</p>
<p><strong>Efficient estimation</strong>: DeMixT adopts an approach of iterated conditional modes (ICM) to guarantee a rapid convergence to a local maximum. We also design a novel gene-set-based component merging approach to reduce the bias of proportion estimation for three-component deconvolutionthe.</p>
<p><strong>Parallel computing</strong>: OpenMP enable parallel computing on single computer by taking advantage of the multiple cores shipped on modern CPUs. The ICM framework further enables parallel computing, which helps compensate for the expensive computing time used in the repeated numerical double integrations.</p>
</div>
<div id="installation" class="section level1">
<h1>3. Installation</h1>
<p>The DeMixT package is compatible with Windows, Linux and MacOS. The user can install it from <code>Bioconductor</code>:</p>
<pre><code>if (!require(&quot;BiocManager&quot;, quietly = TRUE))
    install.packages(&quot;BiocManager&quot;)

BiocManager::install(&quot;DeMixT&quot;)</code></pre>
<p>For Linux and MacOS, the user can also install the latest DeMixT from GitHub:</p>
<pre><code>if (!require(&quot;devtools&quot;, quietly = TRUE))
    install.packages(&#39;devtools&#39;)

devtools::install_github(&quot;wwylab/DeMixT&quot;)</code></pre>
<p>Check if DeMixT is installed successfully:</p>
<pre><code># load package
library(DeMixT)</code></pre>
<p><strong>Note</strong>: DeMixT relies on OpenMP for parallel computing. Starting from R 4.00, R no longer supports OpenMP on MacOS, meaning the user can only run DeMixT with one core on MacOS. We therefore recommend the users to mainly use Linux system for running DeMixT to take advantage of the multi-core parallel computation.</p>
</div>
<div id="functions" class="section level1">
<h1>4. Functions</h1>
<p>The following table shows the functions included in DeMixT.</p>
<table>
<colgroup>
<col width="17%"></col>
<col width="82%"></col>
</colgroup>
<thead>
<tr class="header">
<th>Table Header</th>
<th>Second Header</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>DeMixT</td>
<td>Deconvolution of tumor samples with two or three components.</td>
</tr>
<tr class="even">
<td>DeMixT_GS</td>
<td>Estimates the proportions of mixed samples for each mixing component based on a new approach to select genes that utilizes profile likelihood.</td>
</tr>
<tr class="odd">
<td>DeMixT_DE</td>
<td>Estimates the proportions of mixed samples for each mixing component.</td>
</tr>
<tr class="even">
<td>DeMixT_S2</td>
<td>Deconvolves expressions of each sample for unknown component.</td>
</tr>
<tr class="odd">
<td>Optimum_KernelC</td>
<td>Call the C function used for parameter estimation in DeMixT.</td>
</tr>
<tr class="even">
<td>DeMixT_Preprocessing</td>
<td>Preprocessing functions before running DeMixT.</td>
</tr>
</tbody>
</table>
</div>
<div id="methods" class="section level1">
<h1>5. Methods</h1>
<div id="model" class="section level2">
<h2>5.1 Model</h2>
<p>Let <span class="math inline">\(Y_{ig}\)</span> be the observed expression levels of the raw measured data from clinically derived malignant tumor samples for gene <span class="math inline">\(g, g = 1, \cdots, G\)</span> and sample <span class="math inline">\(i, i = 1, \cdots, My\)</span>. <span class="math inline">\(G\)</span> denotes the total number of probes/genes and <span class="math inline">\(My\)</span> denotes the number of samples. The observed expression levels for solid tumors can be modeled as a linear combination of raw expression levels from three components: <span class="math display">\[ {Y_{ig}} = \pi _{1,i}N_{1,ig} + \pi _{2,i}N_{2,ig} + 
(1 - \pi_{1,i} - \pi _{2,i}){T_{ig}} \label{eq:1} \]</span></p>
<p>Here <span class="math inline">\(N_{1,ig}\)</span>, <span class="math inline">\(N_{2,ig}\)</span> and <span class="math inline">\({T_{ig}}\)</span> are the unobserved raw expression levels from each of the three components. We call the two components for which we require reference samples the <span class="math inline">\(N_1\)</span>-component and the <span class="math inline">\(N_2\)</span>-component. We call the unknown component the T-component. We let <span class="math inline">\(\pi_{1,i}\)</span> denote the proportion of the <span class="math inline">\(N_1\)</span>-component, <span class="math inline">\(\pi_{2,i}\)</span> denote the proportion of the <span class="math inline">\(N_2\)</span>-component, and <span class="math inline">\(1 - \pi_{1,i}-\pi_{2,i}\)</span> denote the proportion of the T-component. We assume that the mixing proportions of one specific sample remain the same across all genes.</p>
<p>Our model allows for one component to be unknown, and therefore does not require reference profiles from all components. A set of samples for <span class="math inline">\(N_{1,ig}\)</span> and <span class="math inline">\(N_{2,ig}\)</span>, respectively, needs to be provided as input data. This three-component deconvolution model is applicable to the linear combination of any three components in any type of material. It can also be simplified to a two-component model, assuming there is just one <span class="math inline">\(N\)</span>-component. For application in this paper, we consider tumor (<span class="math inline">\(T\)</span>), stromal (<span class="math inline">\(N_1\)</span>) and immune components (<span class="math inline">\(N_2\)</span>) in an admixed sample (<span class="math inline">\(Y\)</span>).</p>
<p>Following the convention that <span class="math inline">\(\log_2\)</span>-transformed microarray gene expression data follow a normal distribution, we assume that the raw measures <span class="math inline">\(N_{1,ig} \sim LN({\mu _{{N_1}g}},\sigma _{{N_1}g}^2)\)</span>, <span class="math inline">\(N_{2,ig} \sim LN({\mu _{{N_2}g}},\sigma _{{N_2}g}^2)\)</span> and <span class="math inline">\({T_{ig}} \sim LN({\mu _{Tg}}, \sigma _{Tg}^2)\)</span>, where LN denotes a <span class="math inline">\(\log_2\)</span>-normal distribution and <span class="math inline">\(\sigma _{{N_1}g}^2\)</span>,<span class="math inline">\(\sigma _{{N_2}g}^2\)</span>, <span class="math inline">\(\sigma _{Tg}^2\)</span> reflect the variations under <span class="math inline">\(\log_2\)</span>-transformed data. Consequently, our model can be expressed as the convolution of the density function for three <span class="math inline">\(\log_2\)</span>-normal distributions. Because there is no closed form of this convolution, we use numerical integration to evaluate the complete likelihood function (see the full likelihood in the Supplementary Materials in [1]).</p>
</div>
<div id="the-demixt-algorithm-for-deconvolution" class="section level2">
<h2>5.2 The DeMixT algorithm for deconvolution</h2>
<p>DeMixT estimates all distribution parameters and cellular proportions and reconstitutes the expression profiles for all three components for each gene and each sample. The estimation procedure (summarized in Figure 1b) has two main steps as follows.</p>
<ol style="list-style-type: decimal">
<li><p>Obtain a set of parameters <span class="math inline">\(\{\pi_{1,i}, \pi_{2,i}\}_{i=1}^{My}\)</span>, <span class="math inline">\(\{\mu_T, \sigma_T\}_{g=1}^G\)</span> to maximize the complete likelihood function, for which <span class="math inline">\(\{\mu_{N_{1,g}}, \sigma_{N_{1,g}}, \mu_{N_{2,g}}, \sigma_{N_{2,g}}\}_{g=1}^G\)</span> were already estimated from the available unmatched samples of the <span class="math inline">\(N_1\)</span> and <span class="math inline">\(N_2\)</span> component tissues. (See further details in our paper.)</p></li>
<li><p>Reconstitute the expression profiles by searching each set of <span class="math inline">\(\{n_{1,ig}, n_{2,ig}\}\)</span> that maximizes the joint density of <span class="math inline">\(N_{1,ig}\)</span>, <span class="math inline">\(N_{2,ig}\)</span> and <span class="math inline">\(T_{ig}\)</span>. The value of <span class="math inline">\(t_{ig}\)</span> is solved as <span class="math inline">\({y_{ig}} - {{\hat \pi }_{1,i}}{n_{1,ig}} - {{\hat \pi }_{2,i}}{n_{2,ig}}\)</span>.</p></li>
</ol>
<p>These two steps can be separately implemented using the function DeMixT_DE or DeMixT_GS for the first step and DeMixT_S2 for the second, which are combined in the function DeMixT(Note: DeMixT_GS is the default function for first step).</p>
<p>Since version 1.8.2, DeMixT added simulated normal reference samples, i.e., spike-in, based on the observed normal reference samples. It has been shown to improve accuracy in proportion estimation for the scenario where a dataset consists of samples where true tumor proportions are skewed to the high end.</p>
<p><img src="" width="100%" /></p>
</div>
</div>
<div id="examples" class="section level1">
<h1>6. Examples</h1>
<div id="simulated-two-component-data" class="section level2">
<h2>6.1 Simulated two-component data</h2>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb4-1" title="1"><span class="kw">data</span>(<span class="st">&quot;test.data.2comp&quot;</span>)</a>
<a class="sourceLine" id="cb4-2" title="2"><span class="co"># res.GS = DeMixT_GS(data.Y = test.data.2comp$data.Y, </span></a>
<a class="sourceLine" id="cb4-3" title="3"><span class="co">#                     data.N1 = test.data.2comp$data.N1,</span></a>
<a class="sourceLine" id="cb4-4" title="4"><span class="co">#                     niter = 30, nbin = 50, nspikein = 50,</span></a>
<a class="sourceLine" id="cb4-5" title="5"><span class="co">#                     if.filter = TRUE, ngene.Profile.selected = 150,</span></a>
<a class="sourceLine" id="cb4-6" title="6"><span class="co">#                     mean.diff.in.CM = 0.25, ngene.selected.for.pi = 150,</span></a>
<a class="sourceLine" id="cb4-7" title="7"><span class="co">#                     tol = 10^(-5))</span></a>
<a class="sourceLine" id="cb4-8" title="8"><span class="kw">load</span>(<span class="st">&#39;Res_2comp/res.GS.RData&#39;</span>)</a></code></pre></div>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb5-1" title="1"><span class="kw">head</span>(<span class="kw">t</span>(res.GS<span class="op">$</span>pi))</a></code></pre></div>
<pre><code>##               PiN1       PiT
## Sample 1 0.5955120 0.4044880
## Sample 2 0.2759014 0.7240986
## Sample 3 0.5401655 0.4598345
## Sample 4 0.4497041 0.5502959
## Sample 5 0.6516980 0.3483020
## Sample 6 0.4365191 0.5634809</code></pre>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb7-1" title="1"><span class="kw">head</span>(res.GS<span class="op">$</span>gene.name)</a></code></pre></div>
<pre><code>## [1] &quot;Gene 418&quot; &quot;Gene 452&quot; &quot;Gene 421&quot; &quot;Gene 112&quot; &quot;Gene 154&quot; &quot;Gene 143&quot;</code></pre>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb9-1" title="1"><span class="kw">data</span>(<span class="st">&quot;test.data.2comp&quot;</span>)</a>
<a class="sourceLine" id="cb9-2" title="2"><span class="co"># res.S2 &lt;- DeMixT_S2(data.Y = test.data.2comp$data.Y, </span></a>
<a class="sourceLine" id="cb9-3" title="3"><span class="co">#                     data.N1 = test.data.2comp$data.N1,</span></a>
<a class="sourceLine" id="cb9-4" title="4"><span class="co">#                     data.N2 = NULL, </span></a>
<a class="sourceLine" id="cb9-5" title="5"><span class="co">#                     givenpi = c(t(res.S1$pi[-nrow(res.GS$pi),])), nbin = 50)</span></a>
<a class="sourceLine" id="cb9-6" title="6"><span class="kw">load</span>(<span class="st">&#39;Res_2comp/res.S2.RData&#39;</span>)</a></code></pre></div>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb10-1" title="1"><span class="kw">head</span>(res.S2<span class="op">$</span>decovExprT[,<span class="dv">1</span><span class="op">:</span><span class="dv">5</span>],<span class="dv">3</span>)</a></code></pre></div>
<pre><code>##         Sample 1   Sample 2   Sample 3  Sample 4   Sample 5
## Gene 1 18.857446  60.727041 159.878946 92.031635  40.873852
## Gene 2  2.322481   3.390938   2.406093  2.558962   2.438189
## Gene 3 48.843631 208.166410  66.986239 38.107580 460.556751</code></pre>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb12-1" title="1"><span class="kw">head</span>(res.S2<span class="op">$</span>decovExprN1[,<span class="dv">1</span><span class="op">:</span><span class="dv">5</span>],<span class="dv">3</span>)</a></code></pre></div>
<pre><code>##         Sample 1  Sample 2 Sample 3  Sample 4  Sample 5
## Gene 1  59.37087  71.80492  74.1755  73.55878  72.96267
## Gene 2 107.66874 131.20005 113.6376 120.35924 125.28224
## Gene 3 513.43184 669.79145 613.3042 491.09308 741.76507</code></pre>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb14-1" title="1"><span class="kw">head</span>(res.S2<span class="op">$</span>decovMu,<span class="dv">3</span>)</a></code></pre></div>
<pre><code>##            MuN1      MuT
## Gene 1 6.166484 5.924321
## Gene 2 6.677594 2.974551
## Gene 3 9.329628 7.396647</code></pre>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb16-1" title="1"><span class="kw">head</span>(res.S2<span class="op">$</span>decovSigma,<span class="dv">3</span>)</a></code></pre></div>
<pre><code>##           SigmaN   SigmaT
## Gene 1 0.2222914 1.127726
## Gene 2 0.2319681 1.614169
## Gene 3 0.1881647 1.320477</code></pre>
</div>
<div id="simulated-two-component-data-1" class="section level2">
<h2>6.2 Simulated two-component data</h2>
<p>In the simulation,</p>
<div class="sourceCode" id="cb18"><pre class="sourceCode markdown"><code class="sourceCode markdown"><a class="sourceLine" id="cb18-1" title="1"><span class="fu">## Simulate MuN and MuT for each gene</span></a>
<a class="sourceLine" id="cb18-2" title="2">  MuN &lt;- rnorm(G, 7, 1.5)</a>
<a class="sourceLine" id="cb18-3" title="3">  MuT &lt;- rnorm(G, 7, 1.5)</a>
<a class="sourceLine" id="cb18-4" title="4">  Mu &lt;- cbind(MuN, MuT)</a>
<a class="sourceLine" id="cb18-5" title="5"><span class="fu">## Simulate SigmaN and SigmaT for each gene</span></a>
<a class="sourceLine" id="cb18-6" title="6">  SigmaN &lt;- runif(n = G, min = 0.1, max = 0.8)</a>
<a class="sourceLine" id="cb18-7" title="7">  SigmaT &lt;- runif(n = G, min = 0.1, max = 0.8)</a>
<a class="sourceLine" id="cb18-8" title="8"><span class="fu">## Simulate Tumor Proportion</span></a>
<a class="sourceLine" id="cb18-9" title="9">  PiT = truncdist::rtrunc(n = My,</a>
<a class="sourceLine" id="cb18-10" title="10"><span class="bn">                          spec = &#39;norm&#39;, </span></a>
<a class="sourceLine" id="cb18-11" title="11"><span class="bn">                          mean = 0.55,</span></a>
<a class="sourceLine" id="cb18-12" title="12"><span class="bn">                          sd = 0.2,</span></a>
<a class="sourceLine" id="cb18-13" title="13"><span class="bn">                          a = 0.25,</span></a>
<a class="sourceLine" id="cb18-14" title="14"><span class="bn">                          b = 0.95)</span></a>
<a class="sourceLine" id="cb18-15" title="15"></a>
<a class="sourceLine" id="cb18-16" title="16"><span class="fu">## Simulate Data</span></a>
<a class="sourceLine" id="cb18-17" title="17">  for(k in 1:G){</a>
<a class="sourceLine" id="cb18-18" title="18"><span class="bn">    </span></a>
<a class="sourceLine" id="cb18-19" title="19"><span class="bn">    data.N1[k,] &lt;- 2^rnorm(M1, MuN[k], SigmaN[k]); # normal reference</span></a>
<a class="sourceLine" id="cb18-20" title="20"><span class="bn">    </span></a>
<a class="sourceLine" id="cb18-21" title="21"><span class="bn">    True.data.T[k,] &lt;- 2^rnorm(My, MuT[k], SigmaT[k]);  # True Tumor</span></a>
<a class="sourceLine" id="cb18-22" title="22"><span class="bn">    </span></a>
<a class="sourceLine" id="cb18-23" title="23"><span class="bn">    True.data.N1[k,] &lt;- 2^rnorm(My, MuN[k], SigmaN[k]);  # True Normal</span></a>
<a class="sourceLine" id="cb18-24" title="24"><span class="bn">    </span></a>
<a class="sourceLine" id="cb18-25" title="25"><span class="bn">    data.Y[k,] &lt;- pi[1,]*True.data.N1[k,] + pi[2,]*True.data.T[k,] # Mixture Tumor</span></a>
<a class="sourceLine" id="cb18-26" title="26"><span class="bn">    </span></a>
<a class="sourceLine" id="cb18-27" title="27">  }</a></code></pre></div>
<p>where <span class="math inline">\(\pi_i \in (0.25, 0.95)\)</span> is from truncated normal distribution. In general, the true distribution of tumor proportion does not follow a uniform distribution between <span class="math inline">\([0,1]\)</span>, but instead skewed to the upper part of the interval.</p>
<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb19-1" title="1"><span class="co"># ## DeMixT_DE without Spike-in Normal</span></a>
<a class="sourceLine" id="cb19-2" title="2"><span class="co"># res.S1 = DeMixT_DE(data.Y = test.data.2comp$data.Y, </span></a>
<a class="sourceLine" id="cb19-3" title="3"><span class="co">#                    data.N1 = test.data.2comp$data.N1,</span></a>
<a class="sourceLine" id="cb19-4" title="4"><span class="co">#                    niter = 30, nbin = 50, nspikein = 0,</span></a>
<a class="sourceLine" id="cb19-5" title="5"><span class="co">#                    if.filter = TRUE, </span></a>
<a class="sourceLine" id="cb19-6" title="6"><span class="co">#                    mean.diff.in.CM = 0.25, ngene.selected.for.pi = 150,</span></a>
<a class="sourceLine" id="cb19-7" title="7"><span class="co">#                    tol = 10^(-5))</span></a>
<a class="sourceLine" id="cb19-8" title="8"><span class="co"># ## DeMixT_DE with Spike-in Normal</span></a>
<a class="sourceLine" id="cb19-9" title="9"><span class="co"># res.S1.SP = DeMixT_DE(data.Y = test.data.2comp$data.Y, </span></a>
<a class="sourceLine" id="cb19-10" title="10"><span class="co">#                      data.N1 = test.data.2comp$data.N1,</span></a>
<a class="sourceLine" id="cb19-11" title="11"><span class="co">#                      niter = 30, nbin = 50, nspikein = 50,</span></a>
<a class="sourceLine" id="cb19-12" title="12"><span class="co">#                      if.filter = TRUE, </span></a>
<a class="sourceLine" id="cb19-13" title="13"><span class="co">#                      mean.diff.in.CM = 0.25, ngene.selected.for.pi = 150,</span></a>
<a class="sourceLine" id="cb19-14" title="14"><span class="co">#                      tol = 10^(-5))</span></a>
<a class="sourceLine" id="cb19-15" title="15"><span class="co"># ## DeMixT_GS with Spike-in Normal</span></a>
<a class="sourceLine" id="cb19-16" title="16"><span class="co"># res.GS.SP = DeMixT_GS(data.Y = test.data.2comp$data.Y,</span></a>
<a class="sourceLine" id="cb19-17" title="17"><span class="co">#                      data.N1 = test.data.2comp$data.N1,</span></a>
<a class="sourceLine" id="cb19-18" title="18"><span class="co">#                      niter = 30, nbin = 50, nspikein = 50,</span></a>
<a class="sourceLine" id="cb19-19" title="19"><span class="co">#                      if.filter = TRUE, ngene.Profile.selected = 150,</span></a>
<a class="sourceLine" id="cb19-20" title="20"><span class="co">#                      mean.diff.in.CM = 0.25, ngene.selected.for.pi = 150,</span></a>
<a class="sourceLine" id="cb19-21" title="21"><span class="co">#                      tol = 10^(-5))</span></a>
<a class="sourceLine" id="cb19-22" title="22"><span class="kw">load</span>(<span class="st">&#39;Res_2comp/res.S1.RData&#39;</span>); <span class="kw">load</span>(<span class="st">&#39;Res_2comp/res.S1.SP.RData&#39;</span>); </a>
<a class="sourceLine" id="cb19-23" title="23"><span class="kw">load</span>(<span class="st">&#39;Res_2comp/res.GS.RData&#39;</span>); <span class="kw">load</span>(<span class="st">&#39;Res_2comp/res.GS.SP.RData&#39;</span>); </a></code></pre></div>
<p>This simulation was designed to compare previous DeMixT resutls with DeMixT spike-in results under both gene selection method.</p>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb20-1" title="1">res<span class="fl">.2</span>comp =<span class="st"> </span><span class="kw">as.data.frame</span>(<span class="kw">cbind</span>(<span class="kw">round</span>(<span class="kw">rep</span>(<span class="kw">t</span>(test.data<span class="fl">.2</span>comp<span class="op">$</span>pi[<span class="dv">2</span>,]),<span class="dv">3</span>),<span class="dv">2</span>), </a>
<a class="sourceLine" id="cb20-2" title="2">                                <span class="kw">round</span>(<span class="kw">c</span>(<span class="kw">t</span>(res.S1<span class="op">$</span>pi[<span class="dv">2</span>,]),<span class="kw">t</span>(res.S1.SP<span class="op">$</span>pi[<span class="dv">2</span>,]), <span class="kw">t</span>(res.GS.SP<span class="op">$</span>pi[<span class="dv">2</span>,])),<span class="dv">2</span>),</a>
<a class="sourceLine" id="cb20-3" title="3">                                <span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&#39;DE&#39;</span>,<span class="st">&#39;DE-SP&#39;</span>,<span class="st">&#39;GS-SP&#39;</span>), <span class="dt">each =</span> <span class="dv">100</span>)), <span class="dt">num =</span> <span class="dv">1</span><span class="op">:</span><span class="dv">2</span>)</a>
<a class="sourceLine" id="cb20-4" title="4">res<span class="fl">.2</span>comp<span class="op">$</span>V1 &lt;-<span class="st"> </span><span class="kw">as.numeric</span>(<span class="kw">as.character</span>(res<span class="fl">.2</span>comp<span class="op">$</span>V1))</a>
<a class="sourceLine" id="cb20-5" title="5">res<span class="fl">.2</span>comp<span class="op">$</span>V2 &lt;-<span class="st"> </span><span class="kw">as.numeric</span>(<span class="kw">as.character</span>(res<span class="fl">.2</span>comp<span class="op">$</span>V2))</a>
<a class="sourceLine" id="cb20-6" title="6">res<span class="fl">.2</span>comp<span class="op">$</span>V3 =<span class="st"> </span><span class="kw">as.factor</span>(res<span class="fl">.2</span>comp<span class="op">$</span>V3)</a>
<a class="sourceLine" id="cb20-7" title="7"><span class="kw">names</span>(res<span class="fl">.2</span>comp) =<span class="st"> </span><span class="kw">c</span>(<span class="st">&#39;True.Proportion&#39;</span>, <span class="st">&#39;Estimated.Proportion&#39;</span>, <span class="st">&#39;Method&#39;</span>)</a>
<a class="sourceLine" id="cb20-8" title="8"><span class="co">## Plot</span></a>
<a class="sourceLine" id="cb20-9" title="9"><span class="kw">ggplot</span>(res<span class="fl">.2</span>comp, <span class="kw">aes</span>(<span class="dt">x=</span>True.Proportion, <span class="dt">y=</span>Estimated.Proportion, <span class="dt">group =</span> Method, <span class="dt">color=</span>Method, <span class="dt">shape=</span>Method)) <span class="op">+</span></a>
<a class="sourceLine" id="cb20-10" title="10"><span class="st">  </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span></a>
<a class="sourceLine" id="cb20-11" title="11"><span class="st">  </span><span class="kw">geom_abline</span>(<span class="dt">intercept =</span> <span class="dv">0</span>, <span class="dt">slope =</span> <span class="dv">1</span>, <span class="dt">linetype =</span> <span class="st">&quot;dashed&quot;</span>, <span class="dt">color =</span> <span class="st">&quot;black&quot;</span>, <span class="dt">lwd =</span> <span class="fl">0.5</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb20-12" title="12"><span class="st">  </span><span class="kw">xlim</span>(<span class="dv">0</span>,<span class="dv">1</span>) <span class="op">+</span><span class="st"> </span><span class="kw">ylim</span>(<span class="dv">0</span>,<span class="dv">1</span>)  <span class="op">+</span></a>
<a class="sourceLine" id="cb20-13" title="13"><span class="st">  </span><span class="kw">scale_shape_manual</span>(<span class="dt">values=</span><span class="kw">c</span>(<span class="kw">seq</span>(<span class="dv">1</span><span class="op">:</span><span class="dv">3</span>))) <span class="op">+</span></a>
<a class="sourceLine" id="cb20-14" title="14"><span class="st">  </span><span class="kw">labs</span>(<span class="dt">x =</span> <span class="st">&#39;True Proportion&#39;</span>, <span class="dt">y =</span> <span class="st">&#39;Estimated Proportion&#39;</span>)  </a></code></pre></div>
<p><img src="" style="display: block; margin: auto;" /></p>
</div>
<div id="simulated-three-component-data" class="section level2">
<h2>6.3 Simulated three-component data</h2>
<p>In this simulation,</p>
<div class="sourceCode" id="cb21"><pre class="sourceCode markdown"><code class="sourceCode markdown"><a class="sourceLine" id="cb21-1" title="1">G &lt;- G1 + G2</a>
<a class="sourceLine" id="cb21-2" title="2"><span class="fu">## Simulate MuN1, MuN2 and MuT for each gene</span></a>
<a class="sourceLine" id="cb21-3" title="3">  MuN1 &lt;- rnorm(G, 7, 1.5)</a>
<a class="sourceLine" id="cb21-4" title="4">  MuN2_1st &lt;- MuN1[1:G1] + truncdist::rtrunc(n = 1, </a>
<a class="sourceLine" id="cb21-5" title="5"><span class="bn">                                             spec = &#39;norm&#39;,</span></a>
<a class="sourceLine" id="cb21-6" title="6"><span class="bn">                                             mean = 0,</span></a>
<a class="sourceLine" id="cb21-7" title="7"><span class="bn">                                             sd = 1.5,</span></a>
<a class="sourceLine" id="cb21-8" title="8"><span class="bn">                                             a = -0.1, </span></a>
<a class="sourceLine" id="cb21-9" title="9"><span class="bn">                                             b = 0.1)</span></a>
<a class="sourceLine" id="cb21-10" title="10">  MuN2_2nd &lt;- c()</a>
<a class="sourceLine" id="cb21-11" title="11">  for(l in (G1+1):G){</a>
<a class="sourceLine" id="cb21-12" title="12"><span class="bn">    tmp &lt;- MuN1[l] + truncdist::rtrunc(n = 1, </span></a>
<a class="sourceLine" id="cb21-13" title="13"><span class="bn">                                       spec = &#39;norm&#39;,</span></a>
<a class="sourceLine" id="cb21-14" title="14"><span class="bn">                                       mean = 0,</span></a>
<a class="sourceLine" id="cb21-15" title="15"><span class="bn">                                       sd = 1.5,</span></a>
<a class="sourceLine" id="cb21-16" title="16"><span class="bn">                                       a = 0.1, </span></a>
<a class="sourceLine" id="cb21-17" title="17"><span class="bn">                                       b = 3)^rbinom(1, size=1, prob=0.5)</span></a>
<a class="sourceLine" id="cb21-18" title="18"><span class="bn">    while(tmp &lt;= 0) tmp &lt;- MuN1[l] + truncdist::rtrunc(n = 1, </span></a>
<a class="sourceLine" id="cb21-19" title="19"><span class="bn">                                                       spec = &#39;norm&#39;,</span></a>
<a class="sourceLine" id="cb21-20" title="20"><span class="bn">                                                       mean = 0,</span></a>
<a class="sourceLine" id="cb21-21" title="21"><span class="bn">                                                       sd = 1.5,</span></a>
<a class="sourceLine" id="cb21-22" title="22"><span class="bn">                                                       a = 0.1, </span></a>
<a class="sourceLine" id="cb21-23" title="23"><span class="bn">                                                       b = 3)^rbinom(1, size=1, prob=0.5)</span></a>
<a class="sourceLine" id="cb21-24" title="24"><span class="bn">    MuN2_2nd &lt;- c(MuN2_2nd, tmp)</span></a>
<a class="sourceLine" id="cb21-25" title="25">  }</a>
<a class="sourceLine" id="cb21-26" title="26"><span class="fu">## Simulate SigmaN1, SigmaN2 and SigmaT for each gene</span></a>
<a class="sourceLine" id="cb21-27" title="27">  SigmaN1 &lt;- runif(n = G, min = 0.1, max = 0.8)</a>
<a class="sourceLine" id="cb21-28" title="28">  SigmaN2 &lt;- runif(n = G, min = 0.1, max = 0.8)</a>
<a class="sourceLine" id="cb21-29" title="29">  SigmaT &lt;- runif(n = G, min = 0.1, max = 0.8)</a>
<a class="sourceLine" id="cb21-30" title="30"><span class="fu">## Simulate Tumor Proportion</span></a>
<a class="sourceLine" id="cb21-31" title="31">  pi &lt;- matrix(0, 3, My)</a>
<a class="sourceLine" id="cb21-32" title="32">  pi[1,] &lt;- runif(n = My, min = 0.01, max = 0.97)</a>
<a class="sourceLine" id="cb21-33" title="33">  for(j in 1:My){</a>
<a class="sourceLine" id="cb21-34" title="34"><span class="bn">    pi[2, j] &lt;- runif(n = 1, min = 0.01, max = 0.98 - pi[1,j])</span></a>
<a class="sourceLine" id="cb21-35" title="35"><span class="bn">    pi[3, j] &lt;- 1 - sum(pi[,j])</span></a>
<a class="sourceLine" id="cb21-36" title="36">  }</a>
<a class="sourceLine" id="cb21-37" title="37"><span class="fu">## Simulate Data</span></a>
<a class="sourceLine" id="cb21-38" title="38">  for(k in 1:G){</a>
<a class="sourceLine" id="cb21-39" title="39"><span class="bn">    </span></a>
<a class="sourceLine" id="cb21-40" title="40"><span class="bn">    data.N1[k,] &lt;- 2^rnorm(M1, MuN1[k], SigmaN1[k]); # normal reference 1</span></a>
<a class="sourceLine" id="cb21-41" title="41"><span class="bn">    </span></a>
<a class="sourceLine" id="cb21-42" title="42"><span class="bn">    data.N2[k,] &lt;- 2^rnorm(M2, MuN2[k], SigmaN2[k]); # normal reference 1</span></a>
<a class="sourceLine" id="cb21-43" title="43"><span class="bn">    </span></a>
<a class="sourceLine" id="cb21-44" title="44"><span class="bn">    True.data.T[k,] &lt;- 2^rnorm(My, MuT[k], SigmaT[k]);  # True Tumor</span></a>
<a class="sourceLine" id="cb21-45" title="45"><span class="bn">    </span></a>
<a class="sourceLine" id="cb21-46" title="46"><span class="bn">    True.data.N1[k,] &lt;- 2^rnorm(My, MuN1[k], SigmaN1[k]);  # True Normal 1</span></a>
<a class="sourceLine" id="cb21-47" title="47"><span class="bn">    </span></a>
<a class="sourceLine" id="cb21-48" title="48"><span class="bn">    True.data.N2[k,] &lt;- 2^rnorm(My, MuN2[k], SigmaN2[k]);  # True Normal 1</span></a>
<a class="sourceLine" id="cb21-49" title="49"><span class="bn">    </span></a>
<a class="sourceLine" id="cb21-50" title="50"><span class="bn">    data.Y[k,] &lt;- pi[1,]*True.data.N1[k,] + pi[2,]*True.data.N2[k,] +</span></a>
<a class="sourceLine" id="cb21-51" title="51"><span class="bn">      pi[3,]*True.data.T[k,] # Mixture Tumor</span></a>
<a class="sourceLine" id="cb21-52" title="52"><span class="bn">    </span></a>
<a class="sourceLine" id="cb21-53" title="53">  }</a></code></pre></div>
<p>where <span class="math inline">\(G1\)</span> is the number of genes that <span class="math inline">\(\mu_{N1}\)</span> is close to <span class="math inline">\(\mu_{N2}\)</span>.</p>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb22-1" title="1"><span class="kw">data</span>(<span class="st">&quot;test.data.3comp&quot;</span>)</a>
<a class="sourceLine" id="cb22-2" title="2"><span class="co"># res.S1 &lt;- DeMixT_DE(data.Y = test.data.3comp$data.Y, data.N1 = test.data.3comp$data.N1,</span></a>
<a class="sourceLine" id="cb22-3" title="3"><span class="co">#                    data.N2 = test.data.3comp$data.N2, if.filter = TRUE)</span></a>
<a class="sourceLine" id="cb22-4" title="4"><span class="kw">load</span>(<span class="st">&#39;Res_3comp/res.S1.RData&#39;</span>); </a></code></pre></div>
<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb23-1" title="1">res<span class="fl">.3</span>comp=<span class="st"> </span><span class="kw">as.data.frame</span>(<span class="kw">cbind</span>(<span class="kw">round</span>(<span class="kw">t</span>(<span class="kw">matrix</span>(<span class="kw">t</span>(test.data<span class="fl">.3</span>comp<span class="op">$</span>pi), <span class="dt">nrow =</span> <span class="dv">1</span>)),<span class="dv">2</span>), </a>
<a class="sourceLine" id="cb23-2" title="2">                                <span class="kw">round</span>(<span class="kw">t</span>(<span class="kw">matrix</span>(<span class="kw">t</span>(res.S1<span class="op">$</span>pi), <span class="dt">nrow =</span> <span class="dv">1</span>)),<span class="dv">2</span>), </a>
<a class="sourceLine" id="cb23-3" title="3">                                <span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&#39;N1&#39;</span>,<span class="st">&#39;N2&#39;</span>,<span class="st">&#39;T&#39;</span>), <span class="dt">each =</span> <span class="dv">20</span>)))</a>
<a class="sourceLine" id="cb23-4" title="4">res<span class="fl">.3</span>comp<span class="op">$</span>V1 &lt;-<span class="st"> </span><span class="kw">as.numeric</span>(<span class="kw">as.character</span>(res<span class="fl">.3</span>comp<span class="op">$</span>V1))</a>
<a class="sourceLine" id="cb23-5" title="5">res<span class="fl">.3</span>comp<span class="op">$</span>V2 &lt;-<span class="st"> </span><span class="kw">as.numeric</span>(<span class="kw">as.character</span>(res<span class="fl">.3</span>comp<span class="op">$</span>V2))</a>
<a class="sourceLine" id="cb23-6" title="6">res<span class="fl">.3</span>comp<span class="op">$</span>V3 =<span class="st"> </span><span class="kw">as.factor</span>(res<span class="fl">.3</span>comp<span class="op">$</span>V3)</a>
<a class="sourceLine" id="cb23-7" title="7"><span class="kw">names</span>(res<span class="fl">.3</span>comp) =<span class="st"> </span><span class="kw">c</span>(<span class="st">&#39;True.Proportion&#39;</span>, <span class="st">&#39;Estimated.Proportion&#39;</span>, <span class="st">&#39;Component&#39;</span>)</a>
<a class="sourceLine" id="cb23-8" title="8"><span class="co">## Plot</span></a>
<a class="sourceLine" id="cb23-9" title="9"><span class="kw">ggplot</span>(res<span class="fl">.3</span>comp, <span class="kw">aes</span>(<span class="dt">x=</span>True.Proportion, <span class="dt">y=</span>Estimated.Proportion, <span class="dt">group =</span> Component, <span class="dt">color=</span>Component, <span class="dt">shape=</span>Component)) <span class="op">+</span></a>
<a class="sourceLine" id="cb23-10" title="10"><span class="st">  </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span></a>
<a class="sourceLine" id="cb23-11" title="11"><span class="st">  </span><span class="kw">geom_abline</span>(<span class="dt">intercept =</span> <span class="dv">0</span>, <span class="dt">slope =</span> <span class="dv">1</span>, <span class="dt">linetype =</span> <span class="st">&quot;dashed&quot;</span>, <span class="dt">color =</span> <span class="st">&quot;black&quot;</span>, <span class="dt">lwd =</span> <span class="fl">0.5</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb23-12" title="12"><span class="st">  </span><span class="kw">xlim</span>(<span class="dv">0</span>,<span class="dv">1</span>) <span class="op">+</span><span class="st"> </span><span class="kw">ylim</span>(<span class="dv">0</span>,<span class="dv">1</span>)  <span class="op">+</span></a>
<a class="sourceLine" id="cb23-13" title="13"><span class="st">  </span><span class="kw">scale_shape_manual</span>(<span class="dt">values=</span><span class="kw">c</span>(<span class="kw">seq</span>(<span class="dv">1</span><span class="op">:</span><span class="dv">3</span>))) <span class="op">+</span></a>
<a class="sourceLine" id="cb23-14" title="14"><span class="st">  </span><span class="kw">labs</span>(<span class="dt">x =</span> <span class="st">&#39;True Proportion&#39;</span>, <span class="dt">y =</span> <span class="st">&#39;Estimated Proportion&#39;</span>)  </a></code></pre></div>
<p><img src="" style="display: block; margin: auto;" /></p>
</div>
<div id="real-data-prad-in-tcga-dataset" class="section level2">
<h2>6.4 Real data: PRAD in TCGA dataset</h2>
<div id="preprocessing" class="section level3">
<h3>6.4.1 Preprocessing</h3>
<p>For the deconvolution of real data with DeMixT, the user may apply the following preprocessing steps first. Here, we use the PRAD (prostate adenocarcinoma) from TCGA as an example.</p>
<ol style="list-style-type: decimal">
<li><strong>(Optional) Remove suspicious samples by hierarchical clustering</strong></li>
</ol>
<p>It is possible that the some of the tumor and normal samples are mislabelled. We use the function</p>
<pre><code># hc_labels &lt;- detect_suspicious_sample_by_hierarchical_clustering_2comp(count.matrix, normal.id, tumor.id)</code></pre>
<p>to visually inspect the separation of tumor and normal samples based on the hierarchical clustering of their expressions, in which <code>count.matrix</code> is the raw count matrix; <code>normal.id</code> and <code>tumor.id</code> are the vectors of normal and tumor sample ids, respectively. Generally, one cluster contains tumor samples and the other contains normal samples. Any samples that are clustered outside of its own group label, e.g., tumor samples clustered within the normal sample cluster or normal samples in the tumor cluster, are considered as mislabelled samples and filtered out.</p>
<p><img src="" width="85%" style="display: block; margin: auto;" /></p>
<p><code>count.matrix</code>, <code>normal.id</code> and <code>tumor.id</code> are updated by</p>
<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb25-1" title="1"><span class="co"># normal.id &lt;- setdiff(normal.id, names(hc_labels$cluster[hc_labels$cluster == 1]))</span></a>
<a class="sourceLine" id="cb25-2" title="2"><span class="co"># tumor.id &lt;- setdiff(tumor.id, names(hc_labels$cluster[hc_labels$cluster == 2]))</span></a>
<a class="sourceLine" id="cb25-3" title="3"><span class="co"># count.matrix &lt;- count.matrix[, c(normal.id, tumor.id)]</span></a></code></pre></div>
<ol start="2" style="list-style-type: decimal">
<li><strong>Select genes with small variation in gene expression across samples</strong></li>
</ol>
<p>In this step, we select a subset of ~9000 genes from the original gene set (&gt;50,000) before running DeMixT with the GS (Gene Selection) method so that our model-based gene selection maintains good statistical properties. We use the function</p>
<pre><code># plot_sd(count.matrix, normal.id, tumor.id)</code></pre>
<p>to visualize the distribution of standard deviation of log2 expressions space of normal and tumor samples, <img src="" width="85%" style="display: block; margin: auto;" /> and use the function</p>
<pre><code># num_gene_remaining_different_cutoffs &lt;- subset_sd_gene_remaining(count.matrix, normal.id, tumor.id, cutoff_normal_range = c(0.1, 1.0),  cutoff_tumor_range = c(0, 2.5), cutoff_step = 0.1)</code></pre>
<p>to find he a range of variance in genes from normal samples <code>(cutoff_normal_range)</code> and from tumor samples <code>(cutoff_tumor_range)</code> which results in roughly 9,000 genes.</p>
<p>We then use the function</p>
<pre><code># count.matrix &lt;- subset_sd(count.matrix, normal.id, tumor.id, cutoff_normal = cutoff_normal_range, cutoff_tumor = cutoff_tumor_range)</code></pre>
<p>to update the <code>count.matrix</code> such that it only includes the selected genes.</p>
<ol start="3" style="list-style-type: decimal">
<li><strong>Scale normalization</strong></li>
</ol>
<p>We apply a scale normalization at the 75th percentile across all the tumor and normal samples using the function</p>
<pre><code># count.matrix &lt;- scale_normalization_75th_percentile(count.matrix)</code></pre>
<p>to adjust the expression levels in the samples.</p>
<p><strong>Note</strong>: The user may also use the function</p>
<pre><code># count.matrix &lt;- DeMixT_preprocessing(count.matrix, normal.id, tumor.id, cutoff_normal_range = c(0.1, 1.0),  cutoff_tumor_range = c(0, 2.5), cutoff_step = 0.1)</code></pre>
<p>to perform the preprocessing steps of 2) and 3) in one go.</p>
<ol start="4" style="list-style-type: decimal">
<li><strong>(Optional) Batch effect correction for tumor samples from different batches by ComBat</strong></li>
</ol>
<p>If the tumor samples are from different batches, we recommend the user to inspect the batch effect using the function before running DeMixT</p>
<pre><code># plot_dim(count.matrix.tumor, labels, legend.position = &#39;bottomleft&#39;, legend.cex = 1.2)</code></pre>
<p>This function will generate a PCA plot, in which the samples are colored by the <code>labels</code> indicating different batches of tumor samples, as well as normal samples. If there is a clear separation between different batches of tumor samples, there is likely batch effects. We use the function</p>
<pre><code># count.matrix.tumor &lt;- batch_correction(count.matrix.tumor, labels)</code></pre>
<p>to reduce this effect, where <code>count.matrix.tumor</code> is the raw count matrix only from tumor samples and <code>labels</code> is the factor of tumor batches. The user may choose other batch effect correction methods at this step.</p>
<p>The user may inspect the batch effect again after the above step using the mentioned function</p>
<pre><code># plot_dim(count.matrix.tumor, labels, legend.position = &#39;bottomleft&#39;, legend.cex = 1.2)</code></pre>
</div>
<div id="deconvolution-using-demixt" class="section level3">
<h3>6.4.2 Deconvolution using DeMixT</h3>
<p>To optimize the DeMixT parameter setting for the input data, we recommend testing an array of combinations of the number of spike-ins and the number of selected genes.</p>
<p>The number of CPU cores used by the DeMixT function for parallel computing is specified by the parameter <code>nthread</code>. By default (such as in the code block below), <code>nthread = total_number_of_cores_on_the_machine - 1</code>. The user can change <code>nthread</code> to a number between 0 and the total number of cores on the machine.</p>
<pre><code>## Because of the random initial values and the spike-in samples within the DeMixT function, 
## we would like to remind the user to set seeds to keep track. This seed setting will be 
## internalized in DeMixT in the next update.

# set.seed(1234)

# data.Y = SummarizedExperiment(assays = list(counts = count.matrix[, tumor.id]))
# data.N1 &lt;- SummarizedExperiment(assays = list(counts = count.matrix[, normal.id]))

## In practice, we set the maximum number of spike-in as min(n/3, 200), 
## where n is the number of samples. 
# nspikesin_list = c(0, 50, 100, 150)
## One may set a wider range than provided below for studies other than TCGA.
# ngene.selected_list = c(500, 1000, 1500, 2500)

#for(nspikesin in nspikesin_list){
#    for(ngene.selected in ngene.selected_list){
#        name = paste(&quot;PRAD_demixt_GS_res_nspikesin&quot;, nspikesin, &quot;ngene.selected&quot;, 
#                      ngene.selected,  sep = &quot;_&quot;);
#        name = paste(name, &quot;.RData&quot;, sep = &quot;&quot;);
#        res = DeMixT(data.Y = data.Y,
#                     data.N1 = data.N1,
#                     ngene.selected.for.pi = ngene.selected,
#                     ngene.Profile.selected = ngene.selected,
#                     filter.sd = 0.7, # same upper bound of gene expression standard deviation 
#                     # for normal reference. i.e., preprocessed_data$sd_cutoff_normal[2]
#                     gene.selection.method = &quot;GS&quot;,
#                     nspikein = nspikesin)
#        save(res, file = name)
#    }
#}</code></pre>
<p>We suggest selecting the optimal parameter combination that produces the largest average correlation of estimated tumor propotions with those produced by other combinations. The location of the mode of the Pi estimation may also be considered. The mode located too high or too low may suggest biased estimation.</p>
<p>Instead of selecting using the parameter combination with the highest correlation, one can also select the parameter combination that produces estimated tumor proportions that are most biologically meaningful.</p>
<p>A comprehensive tutorial of using DeMixT for real data deconvolution can be found at <a href="https://wwylab.github.io/DeMixT/tutorial.html">https://wwylab.github.io/DeMixT/tutorial.html</a>.</p>
</div>
</div>
<div id="deconvolution-using-normal-reference-samples-from-gtex" class="section level2">
<h2>6.5 Deconvolution using normal reference samples from GTEx</h2>
<p>We conducted experiments across cancer types to evaluate the impact of technical artifacts such as batch effects to the proportion estimation when using a different cohort. We applied GTEx expression data from normal prostate samples as the normal reference to deconvolute the TCGA prostate cancer samples, where normal tissues were selected without significant pathology. The estimated proportions showed a reasonable correlation (Spearman correlation coefficient = 0.65) with those generated using TCGA normal prostate samples as the normal reference.</p>
<div class="sourceCode" id="cb35"><pre class="sourceCode markdown"><code class="sourceCode markdown"><a class="sourceLine" id="cb35-1" title="1"><span class="fu">## Deconvolute TCGA prostate cancer samples from GTEx normal samples</span></a>
<a class="sourceLine" id="cb35-2" title="2">res.GS.GTEx = DeMixT_GS(data.Y = TCGA_PRAD_Tumor,</a>
<a class="sourceLine" id="cb35-3" title="3"><span class="bn">                        data.N1 = GTEx_PRAD_Normal,</span></a>
<a class="sourceLine" id="cb35-4" title="4"><span class="bn">                        niter = 50, nbin = 50, nspikein = 49, filter.sd = 0.6,</span></a>
<a class="sourceLine" id="cb35-5" title="5"><span class="bn">                        if.filter = TRUE, ngene.Profile.selected = 1500,</span></a>
<a class="sourceLine" id="cb35-6" title="6"><span class="bn">                        mean.diff.in.CM = 0.25, ngene.selected.for.pi = 1500,</span></a>
<a class="sourceLine" id="cb35-7" title="7"><span class="bn">                        tol = 10^(-5))</span></a>
<a class="sourceLine" id="cb35-8" title="8"><span class="fu">## Deconvolute TCGA prostate cancer samples from TCGA normal samples</span></a>
<a class="sourceLine" id="cb35-9" title="9">res.GS.TCGA = DeMixT_GS(data.Y = TCGA_PRAD_Tumor,</a>
<a class="sourceLine" id="cb35-10" title="10"><span class="bn">                        data.N1 = TCGA_PRAD_Normal,</span></a>
<a class="sourceLine" id="cb35-11" title="11"><span class="bn">                        niter = 50, nbin = 50, nspikein = 49, filter.sd = 0.6,</span></a>
<a class="sourceLine" id="cb35-12" title="12"><span class="bn">                        if.filter = TRUE, ngene.Profile.selected = 1500,</span></a>
<a class="sourceLine" id="cb35-13" title="13"><span class="bn">                        mean.diff.in.CM = 0.25, ngene.selected.for.pi = 1500,</span></a>
<a class="sourceLine" id="cb35-14" title="14"><span class="bn">                        tol = 10^(-5))                 </span></a></code></pre></div>
<p><img src="" width="65%" style="display: block; margin: auto;" /></p>
</div>
</div>
<div id="reference" class="section level1">
<h1>7. Reference</h1>
<p>[1]. Wang, Z. et al. Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration. iScience 9, 451–460 (2018).</p>
</div>
<div id="session-info" class="section level1">
<h1>8. Session Info</h1>
<div class="sourceCode" id="cb36"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb36-1" title="1"><span class="kw">sessionInfo</span>(<span class="dt">package =</span> <span class="st">&quot;DeMixT&quot;</span>)</a></code></pre></div>
<pre><code>## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## character(0)
## 
## other attached packages:
## [1] DeMixT_1.14.0
## 
## loaded via a namespace (and not attached):
##   [1] colorspace_2.0-3            bsseq_1.34.0               
##   [3] rjson_0.2.21                XVector_0.38.0             
##   [5] GenomicRanges_1.50.0        base64enc_0.1-3            
##   [7] farver_2.1.1                stats_4.2.1                
##   [9] bit64_4.0.5                 AnnotationDbi_1.60.0       
##  [11] fansi_1.0.3                 codetools_0.2-18           
##  [13] splines_4.2.1               R.methodsS3_1.8.2          
##  [15] sparseMatrixStats_1.10.0    mnormt_2.1.1               
##  [17] cachem_1.0.6                knitr_1.40                 
##  [19] jsonlite_1.8.3              Rsamtools_2.14.0           
##  [21] annotate_1.76.0             base_4.2.1                 
##  [23] png_0.1-7                   R.oo_1.25.0                
##  [25] DSS_2.46.0                  HDF5Array_1.26.0           
##  [27] compiler_4.2.1              httr_1.4.4                 
##  [29] assertthat_0.2.1            Matrix_1.5-1               
##  [31] fastmap_1.1.0               limma_3.54.0               
##  [33] cli_3.4.1                   htmltools_0.5.3            
##  [35] tools_4.2.1                 gtable_0.3.1               
##  [37] glue_1.6.2                  GenomeInfoDbData_1.2.9     
##  [39] dplyr_1.0.10                grDevices_4.2.1            
##  [41] Rcpp_1.0.9                  Biobase_2.58.0             
##  [43] jquerylib_0.1.4             vctrs_0.5.0                
##  [45] Biostrings_2.66.0           rhdf5filters_1.10.0        
##  [47] nlme_3.1-160                rtracklayer_1.58.0         
##  [49] DelayedMatrixStats_1.20.0   psych_2.2.9                
##  [51] xfun_0.34                   stringr_1.4.1              
##  [53] lifecycle_1.0.3             restfulr_0.0.15            
##  [55] gtools_3.9.3                XML_3.99-0.12              
##  [57] dendextend_1.16.0           edgeR_3.40.0               
##  [59] zlibbioc_1.44.0             scales_1.2.1               
##  [61] BSgenome_1.66.0             graphics_4.2.1             
##  [63] MatrixGenerics_1.10.0       parallel_4.2.1             
##  [65] SummarizedExperiment_1.28.0 rhdf5_2.42.0               
##  [67] utils_4.2.1                 yaml_2.3.6                 
##  [69] memoise_2.0.1               gridExtra_2.3              
##  [71] ggplot2_3.3.6               sass_0.4.2                 
##  [73] datasets_4.2.1              stringi_1.7.8              
##  [75] RSQLite_2.2.18              highr_0.9                  
##  [77] genefilter_1.80.0           S4Vectors_0.36.0           
##  [79] BiocIO_1.8.0                permute_0.9-7              
##  [81] BiocGenerics_0.44.0         BiocParallel_1.32.0        
##  [83] GenomeInfoDb_1.34.0         rlang_1.0.6                
##  [85] pkgconfig_2.0.3             matrixStats_0.62.0         
##  [87] bitops_1.0-7                evaluate_0.17              
##  [89] lattice_0.20-45             Rhdf5lib_1.20.0            
##  [91] GenomicAlignments_1.34.0    labeling_0.4.2             
##  [93] bit_4.0.4                   tidyselect_1.2.0           
##  [95] magrittr_2.0.3              R6_2.5.1                   
##  [97] IRanges_2.32.0              generics_0.1.3             
##  [99] DelayedArray_0.24.0         DBI_1.1.3                  
## [101] pillar_1.8.1                withr_2.5.0                
## [103] mgcv_1.8-41                 survival_3.4-0             
## [105] KEGGREST_1.38.0             RCurl_1.98-1.9             
## [107] tibble_3.1.8                crayon_1.5.2               
## [109] KernSmooth_2.23-20          utf8_1.2.2                 
## [111] rmarkdown_2.17              viridis_0.6.2              
## [113] locfit_1.5-9.6              grid_4.2.1                 
## [115] sva_3.46.0                  data.table_1.14.4          
## [117] blob_1.2.3                  methods_4.2.1              
## [119] matrixcalc_1.0-6            digest_0.6.30              
## [121] xtable_1.8-4                R.utils_2.12.1             
## [123] stats4_4.2.1                munsell_0.5.0              
## [125] viridisLite_0.4.1           bslib_0.4.0</code></pre>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>