1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
|
############################################################
#
# DESeq2 organization of R files
#
# core ........... most of the statistical code (example call below)
# fitNbinomGLMs .. three functions for fitting NB GLMs
# methods ........ the S4 methods (estimateSizeFactors, etc.)
# AllClasses ..... class definitions and object constructors
# AllGenerics .... the generics defined in DESeq2
# results ........ results() function and helpers
# plots .......... all plotting functions
# lfcShrink ...... log2 fold change shrinkage
# helper ......... unmix, collapseReplicates, fpkm, fpm, DESeqParallel
# expanded ....... helpers for dealing with expanded model matrices
# wrappers ....... the R wrappers for the C++ functions (mine)
# RcppExports .... the R wrappers for the C++ functions (auto)
#
# rlogTransformation ... rlog
# varianceStabilizingTransformation ... VST
#
# general outline of the internal function calls.
# note: not all of these functions are exported.
#
# DESeq
# |- estimateSizeFactors
# |- estimateSizeFactorsForMatrix
# |- estimateDispersions
# |- estimateDispersionsGeneEst
# |- fitNbinomGLMs
# |- fitBeta (C++)
# |- fitDisp (C++)
# |- estimateDispersionsFit
# |- estimateDispersionsMAP
# |- estimateDispersionPriorVar
# |- fitDisp (C++)
# |- nbinomWaldTest
# |- fitGLMsWithPrior
# |- fitNbinomGLMs
# |- fitBeta (C++)
# |- estimateBetaPriorVar
# |- fitNbinomGLMs
# |- fitBeta (C++)
#
############################################################
#' DESeq2 package for differential analysis of count data
#'
#' The DESeq2 package is designed for normalization,
#' visualization, and differential analysis of high-dimensional
#' count data. It makes use of empirical Bayes techniques
#' to estimate priors for log fold change and dispersion, and
#' to calculate posterior estimates for these quantities.
#'
#' The main functions are:
#'
#' \itemize{
#' \item \code{\link{DESeqDataSet}} - build the dataset, see tximeta & tximport packages for preparing input
#' \item \code{\link{DESeq}} - perform differential analysis
#' \item \code{\link{results}} - build a results table
#' \item \code{\link{lfcShrink}} - estimate shrunken LFC (posterior estimates) using apeglm & ashr pakges
#' \item \code{\link{vst}} - apply variance stabilizing transformation, e.g. for PCA or sample clustering
#' \item Plots, e.g.: \code{\link{plotPCA}}, \code{\link{plotMA}}, \code{\link{plotCounts}}
#' }
#'
#' For detailed information on usage, see the package vignette, by typing
#' \code{vignette("DESeq2")}, or the workflow linked to on the first page
#' of the vignette.
#'
#' All software-related questions should be posted to the Bioconductor Support Site:
#'
#' \url{https://support.bioconductor.org}
#'
#' The code can be viewed at the GitHub repository,
#' which also lists the contributor code of conduct:
#'
#' \url{https://github.com/mikelove/tximport}
#'
#' @references
#'
#' Love, M.I., Huber, W., Anders, S. (2014)
#' Moderated estimation of fold change and dispersion
#' for RNA-seq data with DESeq2. Genome Biology, 15:550.
#' \url{https://doi.org/10.1186/s13059-014-0550-8}
#'
#' @author Michael Love, Wolfgang Huber, Simon Anders
#'
#' @docType package
#' @name DESeq2-package
#' @aliases DESeq2-package
#' @keywords package
NULL
#' Differential expression analysis based on the Negative Binomial (a.k.a. Gamma-Poisson) distribution
#'
#' This function performs a default analysis through the steps:
#' \enumerate{
#' \item estimation of size factors: \code{\link{estimateSizeFactors}}
#' \item estimation of dispersion: \code{\link{estimateDispersions}}
#' \item Negative Binomial GLM fitting and Wald statistics: \code{\link{nbinomWaldTest}}
#' }
#' For complete details on each step, see the manual pages of the respective
#' functions. After the \code{DESeq} function returns a DESeqDataSet object,
#' results tables (log2 fold changes and p-values) can be generated
#' using the \code{\link{results}} function.
#' Shrunken LFC can then be generated using the \code{\link{lfcShrink}} function.
#' All support questions should be posted to the Bioconductor
#' support site: \url{http://support.bioconductor.org}.
#'
#' The differential expression analysis uses a generalized linear model of the form:
#'
#' \deqn{ K_{ij} \sim \textrm{NB}( \mu_{ij}, \alpha_i) }{ K_ij ~ NB(mu_ij, alpha_i) }
#' \deqn{ \mu_{ij} = s_j q_{ij} }{ mu_ij = s_j q_ij }
#' \deqn{ \log_2(q_{ij}) = x_{j.} \beta_i }{ log2(q_ij) = x_j. beta_i }
#'
#' where counts \eqn{K_{ij}}{K_ij} for gene i, sample j are modeled using
#' a Negative Binomial distribution with fitted mean \eqn{\mu_{ij}}{mu_ij}
#' and a gene-specific dispersion parameter \eqn{\alpha_i}{alpha_i}.
#' The fitted mean is composed of a sample-specific size factor
#' \eqn{s_j}{s_j} and a parameter \eqn{q_{ij}}{q_ij} proportional to the
#' expected true concentration of fragments for sample j.
#' The coefficients \eqn{\beta_i}{beta_i} give the log2 fold changes for gene i for each
#' column of the model matrix \eqn{X}{X}.
#' The sample-specific size factors can be replaced by
#' gene-specific normalization factors for each sample using
#' \code{\link{normalizationFactors}}.
#'
#' For details on the fitting of the log2 fold changes and calculation of p-values,
#' see \code{\link{nbinomWaldTest}} if using \code{test="Wald"},
#' or \code{\link{nbinomLRT}} if using \code{test="LRT"}.
#'
#' Experiments without replicates do not allow for estimation of the dispersion
#' of counts around the expected value for each group, which is critical for
#' differential expression analysis. Analysis without replicates was deprecated
#' in v1.20 and is no longer supported since v1.22.
#'
#' The argument \code{minReplicatesForReplace} is used to decide which samples
#' are eligible for automatic replacement in the case of extreme Cook's distance.
#' By default, \code{DESeq} will replace outliers if the Cook's distance is
#' large for a sample which has 7 or more replicates (including itself).
#' This replacement is performed by the \code{\link{replaceOutliers}}
#' function. This default behavior helps to prevent filtering genes
#' based on Cook's distance when there are many degrees of freedom.
#' See \code{\link{results}} for more information about filtering using
#' Cook's distance, and the 'Dealing with outliers' section of the vignette.
#' Unlike the behavior of \code{\link{replaceOutliers}}, here original counts are
#' kept in the matrix returned by \code{\link{counts}}, original Cook's
#' distances are kept in \code{assays(dds)[["cooks"]]}, and the replacement
#' counts used for fitting are kept in \code{assays(dds)[["replaceCounts"]]}.
#'
#' Note that if a log2 fold change prior is used (betaPrior=TRUE)
#' then expanded model matrices will be used in fitting. These are
#' described in \code{\link{nbinomWaldTest}} and in the vignette. The
#' \code{contrast} argument of \code{\link{results}} should be used for
#' generating results tables.
#'
#' @return a \code{\link{DESeqDataSet}} object with results stored as
#' metadata columns. These results should accessed by calling the \code{\link{results}}
#' function. By default this will return the log2 fold changes and p-values for the last
#' variable in the design formula. See \code{\link{results}} for how to access results
#' for other variables.
#'
#' @param object a DESeqDataSet object, see the constructor functions
#' \code{\link{DESeqDataSet}},
#' \code{\link{DESeqDataSetFromMatrix}},
#' \code{\link{DESeqDataSetFromHTSeqCount}}.
#' @param test either "Wald" or "LRT", which will then use either
#' Wald significance tests (defined by \code{\link{nbinomWaldTest}}),
#' or the likelihood ratio test on the difference in deviance between a
#' full and reduced model formula (defined by \code{\link{nbinomLRT}})
#' @param fitType either "parametric", "local", "mean", or "glmGamPoi"
#' for the type of fitting of dispersions to the mean intensity.
#' See \code{\link{estimateDispersions}} for description.
#' @param sfType either "ratio", "poscounts", or "iterate"
#' for the type of size factor estimation. See
#' \code{\link{estimateSizeFactors}} for description.
#' @param betaPrior whether or not to put a zero-mean normal prior on
#' the non-intercept coefficients
#' See \code{\link{nbinomWaldTest}} for description of the calculation
#' of the beta prior. In versions \code{>=1.16}, the default is set
#' to \code{FALSE}, and shrunken LFCs are obtained afterwards using
#' \code{\link{lfcShrink}}.
#' @param full for \code{test="LRT"}, the full model formula,
#' which is restricted to the formula in \code{design(object)}.
#' alternatively, it can be a model matrix constructed by the user.
#' advanced use: specifying a model matrix for full and \code{test="Wald"}
#' is possible if \code{betaPrior=FALSE}
#' @param reduced for \code{test="LRT"}, a reduced formula to compare against,
#' i.e., the full formula with the term(s) of interest removed.
#' alternatively, it can be a model matrix constructed by the user
#' @param quiet whether to print messages at each step
#' @param minReplicatesForReplace the minimum number of replicates required
#' in order to use \code{\link{replaceOutliers}} on a
#' sample. If there are samples with so many replicates, the model will
#' be refit after these replacing outliers, flagged by Cook's distance.
#' Set to \code{Inf} in order to never replace outliers.
#' @param modelMatrixType either "standard" or "expanded", which describe
#' how the model matrix, X of the GLM formula is formed.
#' "standard" is as created by \code{model.matrix} using the
#' design formula. "expanded" includes an indicator variable for each
#' level of factors in addition to an intercept. for more information
#' see the Description of \code{\link{nbinomWaldTest}}.
#' betaPrior must be set to TRUE in order for expanded model matrices
#' to be fit.
#' @param useT logical, passed to \code{\link{nbinomWaldTest}}, default is FALSE,
#' where Wald statistics are assumed to follow a standard Normal
#' @param minmu lower bound on the estimated count for fitting gene-wise dispersion
#' and for use with \code{nbinomWaldTest} and \code{nbinomLRT}.
#' If \code{fitType="glmGamPoi"}, then 1e-6 will be used
#' (as this fitType is optimized for single cell data, where a lower
#' minmu is recommended), otherwise the default value
#' as evaluated on bulk datasets is 0.5
#' @param parallel if FALSE, no parallelization. if TRUE, parallel
#' execution using \code{BiocParallel}, see next argument \code{BPPARAM}.
#' A note on running in parallel using \code{BiocParallel}: it may be
#' advantageous to remove large, unneeded objects from your current
#' R environment before calling \code{DESeq},
#' as it is possible that R's internal garbage collection
#' will copy these files while running on worker nodes.
#' @param BPPARAM an optional parameter object passed internally
#' to \code{\link{bplapply}} when \code{parallel=TRUE}.
#' If not specified, the parameters last registered with
#' \code{\link{register}} will be used.
#'
#' @author Michael Love
#'
#' @references
#'
#' Love, M.I., Huber, W., Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15:550. \url{https://doi.org/10.1186/s13059-014-0550-8}
#'
#' For \code{fitType="glmGamPoi"}:
#'
#' Ahlmann-Eltze, C., Huber, W. (2020) glmGamPoi: Fitting Gamma-Poisson Generalized Linear Models on Single Cell Count Data. bioRxiv. \url{https://doi.org/10.1101/2020.08.13.249623}
#'
#' @import BiocGenerics BiocParallel S4Vectors IRanges GenomicRanges SummarizedExperiment Biobase Rcpp methods
#'
#' @importFrom locfit locfit
#' @importFrom genefilter rowVars filtered_p
#' @importFrom graphics axis hist plot points
#' @importFrom stats Gamma as.formula coefficients df dnbinom dnorm formula glm loess lowess model.matrix optim p.adjust pchisq pnorm prcomp predict pt qf qnorm rchisq relevel rnbinom rnorm runif splinefun terms terms.formula approx
#' @importFrom utils read.table read.csv askYesNo menu
#' @importFrom stats4 summary
#'
#' @useDynLib DESeq2
#'
#' @seealso \code{link{results}}, \code{\link{lfcShrink}}, \code{\link{nbinomWaldTest}}, \code{\link{nbinomLRT}}
#'
#' @examples
#'
#' # see vignette for suggestions on generating
#' # count tables from RNA-Seq data
#' cnts <- matrix(rnbinom(n=1000, mu=100, size=1/0.5), ncol=10)
#' cond <- factor(rep(1:2, each=5))
#'
#' # object construction
#' dds <- DESeqDataSetFromMatrix(cnts, DataFrame(cond), ~ cond)
#'
#' # standard analysis
#' dds <- DESeq(dds)
#' res <- results(dds)
#'
#' # moderated log2 fold changes
#' resultsNames(dds)
#' resLFC <- lfcShrink(dds, coef=2, type="apeglm")
#'
#' # an alternate analysis: likelihood ratio test
#' ddsLRT <- DESeq(dds, test="LRT", reduced= ~ 1)
#' resLRT <- results(ddsLRT)
#'
#' @export
DESeq <- function(object, test=c("Wald","LRT"),
fitType=c("parametric","local","mean", "glmGamPoi"),
sfType=c("ratio","poscounts","iterate"),
betaPrior,
full=design(object), reduced, quiet=FALSE,
minReplicatesForReplace=7, modelMatrixType,
useT=FALSE, minmu=if (fitType=="glmGamPoi") 1e-6 else 0.5,
parallel=FALSE, BPPARAM=bpparam()) {
# check arguments
stopifnot(is(object, "DESeqDataSet"))
test <- match.arg(test, choices=c("Wald","LRT"))
fitType <- match.arg(fitType, choices=c("parametric","local","mean","glmGamPoi"))
dispersionEstimator <- if (fitType == "glmGamPoi") {
"glmGamPoi"
} else {
"DESeq2"
}
sfType <- match.arg(sfType, choices=c("ratio","poscounts","iterate"))
# more check arguments
stopifnot(is.logical(quiet))
stopifnot(is.numeric(minReplicatesForReplace))
stopifnot(is.logical(parallel))
modelAsFormula <- !is.matrix(full) & is(design(object), "formula")
if (missing(betaPrior)) {
betaPrior <- FALSE
} else {
stopifnot(is.logical(betaPrior))
}
# get rid of any NA in the mcols(mcols(object))
object <- sanitizeRowRanges(object)
if (test == "LRT") {
if (missing(reduced)) {
stop("likelihood ratio test requires a 'reduced' design, see ?DESeq")
}
if (betaPrior) {
stop("test='LRT' does not support use of LFC shrinkage, use betaPrior=FALSE")
}
if (!missing(modelMatrixType) && modelMatrixType=="expanded") {
stop("test='LRT' does not support use of expanded model matrix")
}
if (is.matrix(full) | is.matrix(reduced)) {
if (!(is.matrix(full) & is.matrix(reduced))) {
stop("if one of 'full' and 'reduced' is a matrix, the other must be also a matrix")
}
}
if (modelAsFormula) {
checkLRT(full, reduced)
} else {
checkFullRank(full)
checkFullRank(reduced)
if (ncol(full) <= ncol(reduced)) {
stop("the number of columns of 'full' should be more than the number of columns of 'reduced'")
}
}
}
if (test == "Wald" & !missing(reduced)) {
stop("'reduced' ignored when test='Wald'")
}
if (dispersionEstimator == "glmGamPoi" && test == "Wald") {
warning("glmGamPoi dispersion estimator should be used in combination with a LRT and not a Wald test.",
call. = FALSE)
}
if (modelAsFormula) {
# run some tests common to DESeq, nbinomWaldTest, nbinomLRT
designAndArgChecker(object, betaPrior)
if (design(object) == formula(~1)) {
warning("the design is ~ 1 (just an intercept). is this intended?")
}
if (full != design(object)) {
stop("'full' specified as formula should equal design(object)")
}
modelMatrix <- NULL
} else {
# model not as formula, so DESeq() is using supplied model matrix
if (!quiet) message("using supplied model matrix")
if (betaPrior == TRUE) {
stop("betaPrior=TRUE is not supported for user-provided model matrices")
}
checkFullRank(full)
# this will be used for dispersion estimation and testing
modelMatrix <- full
}
attr(object, "betaPrior") <- betaPrior
stopifnot(length(parallel) == 1 & is.logical(parallel))
if (!is.null(sizeFactors(object)) || !is.null(normalizationFactors(object))) {
if (!quiet) {
if (!is.null(normalizationFactors(object))) {
message("using pre-existing normalization factors")
} else {
message("using pre-existing size factors")
}
}
} else {
if (!quiet) message("estimating size factors")
object <- estimateSizeFactors(object, type=sfType, quiet=quiet)
}
if (!parallel) {
if (!quiet) message("estimating dispersions")
object <- estimateDispersions(object, fitType=fitType, quiet=quiet, modelMatrix=modelMatrix, minmu=minmu)
if (!quiet) message("fitting model and testing")
if (test == "Wald") {
object <- nbinomWaldTest(object, betaPrior=betaPrior, quiet=quiet,
modelMatrix=modelMatrix,
modelMatrixType=modelMatrixType,
useT=useT,
minmu=minmu)
} else if (test == "LRT") {
object <- nbinomLRT(object, full=full,
reduced=reduced, quiet=quiet,
minmu=minmu,
type = dispersionEstimator)
}
} else if (parallel) {
if (!missing(modelMatrixType)) {
if (betaPrior) stopifnot(modelMatrixType=="expanded")
}
object <- DESeqParallel(object, test=test, fitType=fitType,
betaPrior=betaPrior, full=full, reduced=reduced,
quiet=quiet, modelMatrix=modelMatrix,
useT=useT, minmu=minmu,
BPPARAM=BPPARAM)
}
# if there are sufficient replicates, then pass through to refitting function
sufficientReps <- any(nOrMoreInCell(attr(object,"modelMatrix"),minReplicatesForReplace))
if (sufficientReps) {
object <- refitWithoutOutliers(object, test=test, betaPrior=betaPrior,
full=full, reduced=reduced, quiet=quiet,
minReplicatesForReplace=minReplicatesForReplace,
modelMatrix=modelMatrix,
modelMatrixType=modelMatrixType)
}
# stash the package version (again, also in construction)
metadata(object)[["version"]] <- packageVersion("DESeq2")
object
}
#' Make a simulated DESeqDataSet
#'
#' Constructs a simulated dataset of Negative Binomial data from
#' two conditions. By default, there are no fold changes between
#' the two conditions, but this can be adjusted with the \code{betaSD} argument.
#'
#' @param n number of rows
#' @param m number of columns
#' @param betaSD the standard deviation for non-intercept betas, i.e. beta ~ N(0,betaSD)
#' @param interceptMean the mean of the intercept betas (log2 scale)
#' @param interceptSD the standard deviation of the intercept betas (log2 scale)
#' @param dispMeanRel a function specifying the relationship of the dispersions on
#' \code{2^trueIntercept}
#' @param sizeFactors multiplicative factors for each sample
#'
#' @return a \code{\link{DESeqDataSet}} with true dispersion,
#' intercept and beta values in the metadata columns. Note that the true
#' betas are provided on the log2 scale.
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet()
#' dds
#'
#' @export
makeExampleDESeqDataSet <- function(n=1000,m=12,betaSD=0,interceptMean=4,interceptSD=2,
dispMeanRel=function(x) 4/x + .1,sizeFactors=rep(1,m)) {
beta <- cbind(rnorm(n,interceptMean,interceptSD),rnorm(n,0,betaSD))
dispersion <- dispMeanRel(2^(beta[,1]))
colData <- DataFrame(condition=factor(rep(c("A","B"),times=c(ceiling(m/2),floor(m/2)))))
x <- if (m > 1) {
stats::model.matrix.default(~ colData$condition)
} else {
cbind(rep(1,m),rep(0,m))
}
mu <- t(2^(x %*% t(beta)) * sizeFactors)
countData <- matrix(rnbinom(m*n, mu=mu, size=1/dispersion), ncol=m)
mode(countData) <- "integer"
colnames(countData) <- paste("sample",1:m,sep="")
rowRanges <- GRanges("1",IRanges(start=(1:n - 1) * 100 + 1,width=100))
names(rowRanges) <- paste0("gene",1:n)
# set environment to global environment,
# to avoid the formula carrying with it all the objects
# here including 'object' itself.
design <- if (m > 1) {
as.formula("~ condition", env=.GlobalEnv)
} else {
as.formula("~ 1", env=.GlobalEnv)
}
object <- DESeqDataSetFromMatrix(countData = countData,
colData = colData,
design = design,
rowRanges = rowRanges)
trueVals <- DataFrame(trueIntercept = beta[,1],
trueBeta = beta[,2],
trueDisp = dispersion)
mcols(trueVals) <- DataFrame(type=rep("input",ncol(trueVals)),
description=c("simulated intercept values",
"simulated beta values",
"simulated dispersion values"))
mcols(object) <- cbind(mcols(object),trueVals)
return(object)
}
#' Low-level function to estimate size factors with robust regression.
#'
#' Given a matrix or data frame of count data, this function estimates the size
#' factors as follows: Each column is divided by the geometric means of the
#' rows. The median (or, if requested, another location estimator) of these
#' ratios (skipping the genes with a geometric mean of zero) is used as the size
#' factor for this column. Typically, one will not call this function directly, but use
#' \code{\link{estimateSizeFactors}}.
#'
#' @param counts a matrix or data frame of counts, i.e., non-negative integer
#' values
#' @param locfunc a function to compute a location for a sample. By default, the
#' median is used. However, especially for low counts, the
#' \code{\link[genefilter]{shorth}} function from genefilter may give better results.
#' @param geoMeans by default this is not provided, and the
#' geometric means of the counts are calculated within the function.
#' A vector of geometric means from another count matrix can be provided
#' for a "frozen" size factor calculation
#' @param controlGenes optional, numeric or logical index vector specifying those genes to
#' use for size factor estimation (e.g. housekeeping or spike-in genes)
#' @param type standard median ratio (\code{"ratio"}) or where the
#' geometric mean is only calculated over positive counts per row
#' (\code{"poscounts"})
#' @return a vector with the estimates size factors, one element per column
#' @author Simon Anders
#' @seealso \code{\link{estimateSizeFactors}}
#' @examples
#'
#' dds <- makeExampleDESeqDataSet()
#' estimateSizeFactorsForMatrix(counts(dds))
#' geoMeans <- exp(rowMeans(log(counts(dds))))
#' estimateSizeFactorsForMatrix(counts(dds),geoMeans=geoMeans)
#'
#' @export
estimateSizeFactorsForMatrix <- function(counts, locfunc=stats::median,
geoMeans, controlGenes,
type=c("ratio","poscounts")) {
type <- match.arg(type, c("ratio","poscounts"))
if (missing(geoMeans)) {
incomingGeoMeans <- FALSE
if (type == "ratio") {
loggeomeans <- rowMeans(log(counts))
} else if (type == "poscounts") {
lc <- log(counts)
lc[!is.finite(lc)] <- 0
loggeomeans <- rowMeans(lc)
allZero <- rowSums(counts) == 0
loggeomeans[allZero] <- -Inf
}
} else {
incomingGeoMeans <- TRUE
if (length(geoMeans) != nrow(counts)) {
stop("geoMeans should be as long as the number of rows of counts")
}
loggeomeans <- log(geoMeans)
}
if (all(is.infinite(loggeomeans))) {
stop("every gene contains at least one zero, cannot compute log geometric means")
}
sf <- if (missing(controlGenes)) {
apply(counts, 2, function(cnts) {
exp(locfunc((log(cnts) - loggeomeans)[is.finite(loggeomeans) & cnts > 0]))
})
} else {
if ( !( is.numeric(controlGenes) | is.logical(controlGenes) ) ) {
stop("controlGenes should be either a numeric or logical vector")
}
loggeomeansSub <- loggeomeans[controlGenes]
apply(counts[controlGenes,,drop=FALSE], 2, function(cnts) {
exp(locfunc((log(cnts) - loggeomeansSub)[is.finite(loggeomeansSub) & cnts > 0]))
})
}
if (incomingGeoMeans) {
# stabilize size factors to have geometric mean of 1
sf <- sf/exp(mean(log(sf)))
}
sf
}
#' Low-level functions to fit dispersion estimates
#'
#' Normal users should instead use \code{\link{estimateDispersions}}.
#' These low-level functions are called by \code{\link{estimateDispersions}},
#' but are exported and documented for non-standard usage.
#' For instance, it is possible to replace fitted values with a custom fit and continue
#' with the maximum a posteriori dispersion estimation, as demonstrated in the
#' examples below.
#'
#' @param object a DESeqDataSet
#' @param fitType either "parametric", "local", "mean", or "glmGamPoi"
#' for the type of fitting of dispersions to the mean intensity.
#' See \code{\link{estimateDispersions}} for description.
#' @param outlierSD the number of standard deviations of log
#' gene-wise estimates above the prior mean (fitted value),
#' above which dispersion estimates will be labelled
#' outliers. Outliers will keep their original value and
#' not be shrunk using the prior.
#' @param dispPriorVar the variance of the normal prior on the log dispersions.
#' If not supplied, this is calculated as the difference between
#' the mean squared residuals of gene-wise estimates to the
#' fitted dispersion and the expected sampling variance
#' of the log dispersion
#' @param minDisp small value for the minimum dispersion, to allow
#' for calculations in log scale, one order of magnitude above this value is used
#' as a test for inclusion in mean-dispersion fitting
#' @param kappa_0 control parameter used in setting the initial proposal
#' in backtracking search, higher kappa_0 results in larger steps
#' @param dispTol control parameter to test for convergence of log dispersion,
#' stop when increase in log posterior is less than dispTol
#' @param maxit control parameter: maximum number of iterations to allow for convergence
#' @param useCR whether to use Cox-Reid correction
#' @param weightThreshold threshold for subsetting the design matrix and GLM weights
#' for calculating the Cox-Reid correction
#' @param quiet whether to print messages at each step
#' @param modelMatrix for advanced use only,
#' a substitute model matrix for gene-wise and MAP dispersion estimation
#' @param niter number of times to iterate between estimation of means and
#' estimation of dispersion
#' @param linearMu estimate the expected counts matrix using a linear model,
#' default is NULL, in which case a lienar model is used if the
#' number of groups defined by the model matrix is equal to the number
#' of columns of the model matrix
#' @param minmu lower bound on the estimated count for fitting gene-wise dispersion
#' @param alphaInit initial guess for the dispersion estimate, alpha
#' @param type can either be "DESeq2" or "glmGamPoi". Specifies if the glmGamPoi
#' package is used to calculate the dispersion. This can be significantly faster
#' if there are many replicates with small counts.
#'
#' @return a DESeqDataSet with gene-wise, fitted, or final MAP
#' dispersion estimates in the metadata columns of the object.
#'
#' \code{estimateDispersionsPriorVar} is called inside of \code{estimateDispersionsMAP}
#' and stores the dispersion prior variance as an attribute of
#' \code{dispersionFunction(dds)}, which can be manually provided to
#' \code{estimateDispersionsMAP} for parallel execution.
#'
#' @aliases estimateDispersionsGeneEst estimateDispersionsFit estimateDispersionsMAP estimateDispersionsPriorVar
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet()
#' dds <- estimateSizeFactors(dds)
#' dds <- estimateDispersionsGeneEst(dds)
#' dds <- estimateDispersionsFit(dds)
#' dds <- estimateDispersionsMAP(dds)
#' plotDispEsts(dds)
#'
#' # after having run estimateDispersionsFit()
#' # the dispersion prior variance over all genes
#' # can be obtained like so:
#'
#' dispPriorVar <- estimateDispersionsPriorVar(dds)
#'
#' @seealso \code{\link{estimateDispersions}}
#'
#' @export
estimateDispersionsGeneEst <- function(object, minDisp=1e-8, kappa_0=1,
dispTol=1e-6, maxit=100, useCR=TRUE,
weightThreshold=1e-2,
quiet=FALSE,
modelMatrix=NULL, niter=1, linearMu=NULL,
minmu=if (type=="glmGamPoi") 1e-6 else 0.5,
alphaInit=NULL,
type = c("DESeq2", "glmGamPoi")) {
type <- match.arg(type, c("DESeq2", "glmGamPoi"))
if (!is.null(mcols(object)$dispGeneEst)) {
if (!quiet) message("found already estimated gene-wise dispersions, removing these")
removeCols <- c("dispGeneEst","dispGeneIter")
mcols(object) <- mcols(object)[,!names(mcols(object)) %in% removeCols,drop=FALSE]
}
stopifnot(length(minDisp) == 1)
stopifnot(length(kappa_0) == 1)
stopifnot(length(dispTol) == 1)
stopifnot(length(maxit) == 1)
if (log(minDisp/10) <= -30) {
stop("for computational stability, log(minDisp/10) should be above -30")
}
# in case the class of the mcols(mcols(object)) are not character
object <- sanitizeRowRanges(object)
if (is.null(modelMatrix)) {
modelMatrix <- getModelMatrix(object)
}
checkFullRank(modelMatrix)
if (nrow(modelMatrix) == ncol(modelMatrix)) {
stop("the number of samples and the number of model coefficients are equal,
i.e., there are no replicates to estimate the dispersion.
use an alternate design formula")
}
object <- getBaseMeansAndVariances(object)
# use weights if they are present in assays(object)
# (we need this already to decide about linear mu fitting)
attr(object, "weightsOK") <- NULL # reset any information
wlist <- getAndCheckWeights(object, modelMatrix, weightThreshold=weightThreshold)
object <- wlist$object
weights <- wlist$weights
# don't let weights go below 1e-6
weights <- pmax(weights, 1e-6)
useWeights <- wlist$useWeights
# only continue on the rows with non-zero row mean
objectNZ <- object[!mcols(object)$allZero,,drop=FALSE]
weights <- weights[!mcols(object)$allZero,,drop=FALSE]
if (is.null(alphaInit)) {
# this rough dispersion estimate (alpha_hat)
# is for estimating mu
# and for the initial starting point for line search
roughDisp <- roughDispEstimate(y = counts(objectNZ,normalized=TRUE),
x = modelMatrix)
momentsDisp <- momentsDispEstimate(objectNZ)
alpha_hat <- pmin(roughDisp, momentsDisp)
} else {
if (length(alphaInit) == 1) {
alpha_hat <- rep(alphaInit, nrow(objectNZ))
} else {
stopifnot(length(alphaInit) == nrow(objectNZ))
alpha_hat <- alphaInit
}
}
# bound the rough estimated alpha between minDisp and maxDisp for numeric stability
maxDisp <- max(10, ncol(object))
alpha_hat <- alpha_hat_new <- alpha_init <- pmin(pmax(minDisp, alpha_hat), maxDisp)
stopifnot(length(niter) == 1 & niter > 0)
# use a linear model to estimate the expected counts
# if the number of groups according to the model matrix
# is equal to the number of columns
if (is.null(linearMu)) {
modelMatrixGroups <- modelMatrixGroups(modelMatrix)
linearMu <- nlevels(modelMatrixGroups) == ncol(modelMatrix)
# also check for weights (then can't do linear mu)
if (useWeights) {
linearMu <- FALSE
}
}
# below, iterate between mean and dispersion estimation (niter) times
fitidx <- rep(TRUE,nrow(objectNZ))
mu <- matrix(0, nrow=nrow(objectNZ), ncol=ncol(objectNZ))
dispIter <- numeric(nrow(objectNZ))
# bound the estimated count by 'minmu'
# this helps make the fitting more robust,
# because 1/mu occurs in the weights for the NB GLM
for (iter in seq_len(niter)) {
if (!linearMu) {
fit <- fitNbinomGLMs(objectNZ[fitidx,,drop=FALSE],
alpha_hat=alpha_hat[fitidx],
modelMatrix=modelMatrix, type=type)
fitMu <- fit$mu
} else {
fitMu <- linearModelMuNormalized(objectNZ[fitidx,,drop=FALSE],
modelMatrix)
}
fitMu[fitMu < minmu] <- minmu
mu[fitidx,] <- fitMu
# use of kappa_0 in backtracking search
# initial proposal = log(alpha) + kappa_0 * deriv. of log lik. w.r.t. log(alpha)
# use log(minDisp/10) to stop if dispersions going to -infinity
if (type == "DESeq2") {
dispRes <- fitDispWrapper(ySEXP = counts(objectNZ)[fitidx,,drop=FALSE],
xSEXP = modelMatrix,
mu_hatSEXP = fitMu,
log_alphaSEXP = log(alpha_hat)[fitidx],
log_alpha_prior_meanSEXP = log(alpha_hat)[fitidx],
log_alpha_prior_sigmasqSEXP = 1, min_log_alphaSEXP = log(minDisp/10),
kappa_0SEXP = kappa_0, tolSEXP = dispTol,
maxitSEXP = maxit, usePriorSEXP = FALSE,
weightsSEXP = weights,
useWeightsSEXP = useWeights,
weightThresholdSEXP = weightThreshold,
useCRSEXP = useCR)
dispIter[fitidx] <- dispRes$iter
alpha_hat_new[fitidx] <- pmin(exp(dispRes$log_alpha), maxDisp)
last_lp <- dispRes$last_lp
initial_lp <- dispRes$initial_lp
# only rerun those rows which moved
} else if (type == "glmGamPoi") {
if (!requireNamespace("glmGamPoi", quietly=TRUE)) {
stop("type='glmGamPoi' requires installing the Bioconductor package 'glmGamPoi'")
}
if (!quiet) message("using 'glmGamPoi' as fitType. If used in published research, please cite:
Ahlmann-Eltze, C., Huber, W. (2020) glmGamPoi: Fitting Gamma-Poisson
Generalized Linear Models on Single Cell Count Data. bioRxiv.
https://doi.org/10.1101/2020.08.13.249623")
Counts <- counts(objectNZ)
initial_lp <- vapply(which(fitidx), function(idx){
sum(dnbinom(Counts[idx, ], mu = fitMu[idx, ], size = 1 / alpha_hat[idx], log = TRUE))
}, FUN.VALUE = 0.0)
dispersion_fits <- glmGamPoi::overdispersion_mle(Counts[fitidx, ], mean = fitMu[fitidx, ],
model_matrix = modelMatrix, verbose = ! quiet)
dispIter[fitidx] <- dispersion_fits$iterations
alpha_hat_new[fitidx] <- pmin(dispersion_fits$estimate, maxDisp)
last_lp <- vapply(which(fitidx), function(idx){
sum(dnbinom(Counts[idx, ], mu = fitMu[idx, ], size = 1 / alpha_hat_new[idx], log = TRUE))
}, FUN.VALUE = 0.0)
}
fitidx <- abs(log(alpha_hat_new) - log(alpha_hat)) > .05
alpha_hat <- alpha_hat_new
if (sum(fitidx) == 0) break
}
# dont accept moves if the log posterior did not
# increase by more than one millionth,
# and set the small estimates to the minimum dispersion
dispGeneEst <- alpha_hat
if (niter == 1) {
noIncrease <- last_lp < initial_lp + abs(initial_lp)/1e6
dispGeneEst[which(noIncrease)] <- alpha_init[which(noIncrease)]
}
# didn't reach the maxmium and iterated more than once
dispGeneEstConv <- dispIter < maxit & !(dispIter == 1)
# if lacking convergence from fitDisp() (C++)...
refitDisp <- !dispGeneEstConv & dispGeneEst > minDisp*10
if (sum(refitDisp) > 0) {
dispGrid <- fitDispGridWrapper(y = counts(objectNZ)[refitDisp,,drop=FALSE],
x = modelMatrix,
mu = mu[refitDisp,,drop=FALSE],
logAlphaPriorMean = rep(0,sum(refitDisp)),
logAlphaPriorSigmaSq = 1, usePrior = FALSE,
weightsSEXP = weights[refitDisp,,drop=FALSE],
useWeightsSEXP = useWeights,
weightThresholdSEXP = weightThreshold,
useCRSEXP = useCR)
dispGeneEst[refitDisp] <- dispGrid
}
dispGeneEst <- pmin(pmax(dispGeneEst, minDisp), maxDisp)
dispDataFrame <- buildDataFrameWithNARows(list(dispGeneEst=dispGeneEst,
dispGeneIter=dispIter),
mcols(object)$allZero)
mcols(dispDataFrame) <- DataFrame(type=rep("intermediate",ncol(dispDataFrame)),
description=c("gene-wise estimates of dispersion",
"number of iterations for gene-wise"))
mcols(object) <- cbind(mcols(object), dispDataFrame)
assays(object, withDimnames=FALSE)[["mu"]] <- buildMatrixWithNARows(mu, mcols(object)$allZero)
return(object)
}
#' @rdname estimateDispersionsGeneEst
#' @export
estimateDispersionsFit <- function(object,fitType=c("parametric","local","mean", "glmGamPoi"),
minDisp=1e-8, quiet=FALSE) {
if (is.null(mcols(object)$allZero)) {
object <- getBaseMeansAndVariances(object)
}
objectNZ <- object[!mcols(object)$allZero,,drop=FALSE]
useForFit <- mcols(objectNZ)$dispGeneEst > 100*minDisp
if (sum(useForFit) == 0) {
stop("all gene-wise dispersion estimates are within 2 orders of magnitude
from the minimum value, and so the standard curve fitting techniques will not work.
One can instead use the gene-wise estimates as final estimates:
dds <- estimateDispersionsGeneEst(dds)
dispersions(dds) <- mcols(dds)$dispGeneEst
...then continue with testing using nbinomWaldTest or nbinomLRT")
}
fitType <- match.arg(fitType, choices=c("parametric","local","mean", "glmGamPoi"))
stopifnot(length(fitType)==1)
stopifnot(length(minDisp)==1)
if (fitType == "parametric") {
trial <- try(dispFunction <- parametricDispersionFit(mcols(objectNZ)$baseMean[useForFit],
mcols(objectNZ)$dispGeneEst[useForFit]),
silent=TRUE)
if (inherits(trial,"try-error")) {
message("-- note: fitType='parametric', but the dispersion trend was not well captured by the
function: y = a/x + b, and a local regression fit was automatically substituted.
specify fitType='local' or 'mean' to avoid this message next time.")
fitType <- "local"
}
}
if (fitType == "local") {
dispFunction <- localDispersionFit(means = mcols(objectNZ)$baseMean[useForFit],
disps = mcols(objectNZ)$dispGeneEst[useForFit],
minDisp = minDisp)
}
if (fitType == "mean") {
useForMean <- mcols(objectNZ)$dispGeneEst > 10*minDisp
meanDisp <- mean(mcols(objectNZ)$dispGeneEst[useForMean],na.rm=TRUE,trim=0.001)
dispFunction <- function(means) meanDisp
attr( dispFunction, "mean" ) <- meanDisp
}
if (fitType == "glmGamPoi") {
if (!requireNamespace("glmGamPoi", quietly=TRUE)) {
stop("type='glmGamPoi' requires installing the Bioconductor package 'glmGamPoi'")
}
base_means <- mcols(objectNZ)$baseMean[useForFit]
median_fit <- glmGamPoi::loc_median_fit(base_means,
mcols(objectNZ)$dispGeneEst[useForFit])
get_closest_index <- function(x, vec){
iv <- findInterval(x, vec)
dist_left <- x - vec[ifelse(iv == 0, NA, iv)]
dist_right <- vec[iv + 1] - x
ifelse(! is.na(dist_left) & (is.na(dist_right) | dist_left < dist_right), iv, iv + 1)
}
sorted_bm <- sort(base_means)
ordered_medians <- median_fit[order(base_means)]
dispFunction <- function(means){
indices <- get_closest_index(means, sorted_bm)
ordered_medians[indices]
}
}
if (!(fitType %in% c("parametric","local","mean", "glmGamPoi"))) {
stop("unknown fitType")
}
# store the dispersion function and attributes
attr( dispFunction, "fitType" ) <- fitType
if (quiet) {
suppressMessages({ dispersionFunction(object) <- dispFunction })
} else {
dispersionFunction(object) <- dispFunction
}
return(object)
}
#' @rdname estimateDispersionsGeneEst
#' @export
estimateDispersionsMAP <- function(object, outlierSD=2, dispPriorVar,
minDisp=1e-8, kappa_0=1, dispTol=1e-6,
maxit=100, useCR=TRUE,
weightThreshold=1e-2,
modelMatrix=NULL,
type = c("DESeq2", "glmGamPoi"),
quiet=FALSE) {
stopifnot(length(outlierSD)==1)
stopifnot(length(minDisp)==1)
stopifnot(length(kappa_0)==1)
stopifnot(length(dispTol)==1)
stopifnot(length(maxit)==1)
type <- match.arg(type, c("DESeq2", "glmGamPoi"))
if (is.null(mcols(object)$allZero)) {
object <- getBaseMeansAndVariances(object)
}
if (!is.null(mcols(object)$dispersion)) {
if (!quiet) message("found already estimated dispersions, removing these")
removeCols <- c("dispersion","dispOutlier","dispMAP","dispIter","dispConv")
mcols(object) <- mcols(object)[,!names(mcols(object)) %in% removeCols,drop=FALSE]
}
if (is.null(modelMatrix)) {
modelMatrix <- getModelMatrix(object)
}
# fill in the calculated dispersion prior variance
if (missing(dispPriorVar)) {
# if no gene-wise estimates above minimum
if (sum(mcols(object)$dispGeneEst >= minDisp*100,na.rm=TRUE) == 0) {
warning(paste0("all genes have dispersion estimates < ",minDisp*10,
", returning disp = ",minDisp*10))
resultsList <- list(dispersion = rep(minDisp*10, sum(!mcols(object)$allZero)))
dispDataFrame <- buildDataFrameWithNARows(resultsList, mcols(object)$allZero)
mcols(dispDataFrame) <- DataFrame(type="intermediate",
description="final estimates of dispersion")
mcols(object) <- cbind(mcols(object), dispDataFrame)
dispFn <- dispersionFunction(object)
attr( dispFn, "dispPriorVar" ) <- 0.25
dispersionFunction(object, estimateVar=FALSE) <- dispFn
return(object)
}
dispPriorVar <- estimateDispersionsPriorVar(object, modelMatrix=modelMatrix)
dispFn <- dispersionFunction(object)
attr( dispFn, "dispPriorVar" ) <- dispPriorVar
dispersionFunction(object, estimateVar=FALSE) <- dispFn
} else {
dispFn <- dispersionFunction(object)
attr( dispFn, "dispPriorVar" ) <- dispPriorVar
dispersionFunction(object, estimateVar=FALSE) <- dispFn
}
stopifnot(length(dispPriorVar)==1)
# use weights if they are present in assays(object)
wlist <- getAndCheckWeights(object, modelMatrix, weightThreshold=weightThreshold)
object <- wlist$object
weights <- wlist$weights
useWeights <- wlist$useWeights
objectNZ <- object[!mcols(object)$allZero,,drop=FALSE]
weights <- weights[!mcols(object)$allZero,,drop=FALSE]
varLogDispEsts <- attr( dispersionFunction(object), "varLogDispEsts" )
# set prior variance for fitting dispersion
log_alpha_prior_sigmasq <- dispPriorVar
# get previously calculated mu
mu <- assays(objectNZ)[["mu"]]
if (type == "DESeq2" ) {
# start fitting at gene estimate unless the points are one order of magnitude
# below the fitted line, then start at fitted line
dispInit <- ifelse(mcols(objectNZ)$dispGeneEst > 0.1 * mcols(objectNZ)$dispFit,
mcols(objectNZ)$dispGeneEst,
mcols(objectNZ)$dispFit)
# if any missing values, fill in the fitted value to initialize
dispInit[is.na(dispInit)] <- mcols(objectNZ)$dispFit[is.na(dispInit)]
# run with prior
dispResMAP <- fitDispWrapper(ySEXP = counts(objectNZ),
xSEXP = modelMatrix,
mu_hatSEXP = mu,
log_alphaSEXP = log(dispInit),
log_alpha_prior_meanSEXP = log(mcols(objectNZ)$dispFit),
log_alpha_prior_sigmasqSEXP = log_alpha_prior_sigmasq,
min_log_alphaSEXP = log(minDisp/10),
kappa_0SEXP = kappa_0, tolSEXP = dispTol,
maxitSEXP = maxit, usePriorSEXP = TRUE,
weightsSEXP = weights,
useWeightsSEXP = useWeights,
weightThresholdSEXP = weightThreshold,
useCRSEXP = useCR)
# prepare dispersions for storage in mcols(object)
dispMAP <- exp(dispResMAP$log_alpha)
dispIter <- dispResMAP$iter
# when lacking convergence from fitDisp() (C++)
# we use a function to maximize dispersion parameter
# along an adaptive grid (also C++)
dispConv <- dispResMAP$iter < maxit
refitDisp <- !dispConv
if (sum(refitDisp) > 0) {
dispGrid <- fitDispGridWrapper(y = counts(objectNZ)[refitDisp,,drop=FALSE],
x = modelMatrix,
mu = mu[refitDisp,,drop=FALSE],
logAlphaPriorMean = log(mcols(objectNZ)$dispFit)[refitDisp],
logAlphaPriorSigmaSq = log_alpha_prior_sigmasq,
usePrior=TRUE,
weightsSEXP = weights[refitDisp,,drop=FALSE],
useWeightsSEXP = useWeights,
weightThresholdSEXP = weightThreshold,
useCRSEXP=TRUE)
dispMAP[refitDisp] <- dispGrid
}
} else if (type == "glmGamPoi") {
if (!requireNamespace("glmGamPoi", quietly=TRUE)) {
stop("type='glmGamPoi' requires installing the Bioconductor package 'glmGamPoi'")
}
stopifnot("type = 'glmGamPoi' cannot handle weights" = ! useWeights)
gene_means <- mcols(objectNZ)$baseMean
disp_est <- mcols(objectNZ)$dispGeneEst
disp_trend <- mcols(objectNZ)$dispFit
shrink_res <- glmGamPoi::overdispersion_shrinkage(disp_est, gene_means = gene_means,
df = ncol(objectNZ) - ncol(modelMatrix),
disp_trend = disp_trend)
dispFitCorrected <- (shrink_res$ql_disp_trend * (gene_means + gene_means^2 * disp_trend) - gene_means) / gene_means^2
dispFitCorrected <- pmin(pmax(dispFitCorrected, minDisp), max(10, ncol(object)))
qlResultsList <- list(qlDispMLE = shrink_res$ql_disp_estimate,
qlDispFit = shrink_res$ql_disp_trend,
qlDispMAP = shrink_res$ql_disp_shrunken,
dispFitQLCorrected = dispFitCorrected)
qlDispDataFrame <- buildDataFrameWithNARows(qlResultsList, mcols(object)$allZero)
mcols(qlDispDataFrame) <- DataFrame(type=rep("intermediate",ncol(qlDispDataFrame)),
description=c("quasi likelihood dispersion MLE",
"quasi likelihood dispersion Trend",
"quasi likelihood dispersion MAP",
"dispersion trend corrected by quasi likelihood"))
mcols(object) <- cbind(mcols(object), qlDispDataFrame)
attr( object, "quasiLikelihood_df0" ) <- shrink_res$ql_df0
# Quick way to find alpha that would give same variance as shrunken quasi
# likelihood dispersion with dispFit
dispMAP <- (shrink_res$ql_disp_shrunken * (gene_means + gene_means^2 * disp_trend) - gene_means) / gene_means^2
dispIter <- rep(0, length(dispMAP))
}
# bound the dispersion estimate between minDisp and maxDisp for numeric stability
maxDisp <- max(10, ncol(object))
dispMAP <- pmin(pmax(dispMAP, minDisp), maxDisp)
dispersionFinal <- dispMAP
# detect outliers which have gene-wise estimates
# outlierSD * standard deviation of log gene-wise estimates
# above the fitted mean (prior mean)
# and keep the original gene-est value for these.
# Note: we use the variance of log dispersions estimates
# from all the genes, not only those from below
dispOutlier <- log(mcols(objectNZ)$dispGeneEst) >
log(mcols(objectNZ)$dispFit) +
outlierSD * sqrt(varLogDispEsts)
dispOutlier[is.na(dispOutlier)] <- FALSE
dispersionFinal[dispOutlier] <- mcols(objectNZ)$dispGeneEst[dispOutlier]
resultsList <- list(dispersion = dispersionFinal,
dispIter = dispIter,
dispOutlier = dispOutlier,
dispMAP = dispMAP)
dispDataFrame <- buildDataFrameWithNARows(resultsList, mcols(object)$allZero)
mcols(dispDataFrame) <- DataFrame(type=rep("intermediate",ncol(dispDataFrame)),
description=c("final estimate of dispersion",
"number of iterations",
"dispersion flagged as outlier",
"maximum a posteriori estimate"))
mcols(object) <- cbind(mcols(object), dispDataFrame)
return(object)
}
#' @rdname estimateDispersionsGeneEst
#' @export
estimateDispersionsPriorVar <- function(object, minDisp=1e-8, modelMatrix=NULL) {
objectNZ <- object[!mcols(object)$allZero,,drop=FALSE]
aboveMinDisp <- mcols(objectNZ)$dispGeneEst >= minDisp*100
if (is.null(modelMatrix)) {
modelMatrix <- getModelMatrix(object)
}
# estimate the variance of the distribution of the
# log dispersion estimates around the fitted value
dispResiduals <- log(mcols(objectNZ)$dispGeneEst) - log(mcols(objectNZ)$dispFit)
if (sum(aboveMinDisp,na.rm=TRUE) == 0) {
stop("no data found which is greater than minDisp")
}
varLogDispEsts <- attr(dispersionFunction(object), "varLogDispEsts")
m <- nrow(modelMatrix)
p <- ncol(modelMatrix)
# if the residual degrees of freedom is between 1 and 3, the distribution
# of log dispersions is especially asymmetric and poorly estimated
# by the MAD. we then use an alternate estimator, a monte carlo
# approach to match the distribution
if (((m - p) <= 3) & (m > p)) {
# in order to produce identical results we set the seed,
# and so we need to save and restore the .Random.seed value first
if (exists(".Random.seed")) {
oldRandomSeed <- .Random.seed
}
set.seed(2)
# The residuals are the observed distribution we try to match
obsDist <- dispResiduals[aboveMinDisp]
brks <- -20:20/2
obsDist <- obsDist[obsDist > min(brks) & obsDist < max(brks)]
obsVarGrid <- seq(from=0,to=8,length=200)
obsDistHist <- hist(obsDist,breaks=brks,plot=FALSE)
klDivs <- sapply(obsVarGrid, function(x) {
randDist <- log(rchisq(1e4,df=(m-p))) + rnorm(1e4,0,sqrt(x)) - log(m - p)
randDist <- randDist[randDist > min(brks) & randDist < max(brks)]
randDistHist <- hist(randDist,breaks=brks,plot=FALSE)
z <- c(obsDistHist$density,randDistHist$density)
small <- min(z[z > 0])
kl <- sum(obsDistHist$density * (log(obsDistHist$density + small) - log(randDistHist$density + small)))
kl
})
lofit <- loess(klDivs ~ obsVarGrid, span=.2)
obsVarFineGrid <- seq(from=0,to=8,length=1000)
lofitFitted <- predict(lofit,obsVarFineGrid)
argminKL <- obsVarFineGrid[which.min(lofitFitted)]
expVarLogDisp <- trigamma((m - p)/2)
dispPriorVar <- pmax(argminKL, 0.25)
# finally, restore the .Random.seed if it existed beforehand
if (exists("oldRandomSeed")) {
.Random.seed <<- oldRandomSeed
}
return(dispPriorVar)
}
# estimate the expected sampling variance of the log estimates
# Var(log(cX)) = Var(log(X))
# X ~ chi-squared with m - p degrees of freedom
if (m > p) {
expVarLogDisp <- trigamma((m - p)/2)
# set the variance of the prior using these two estimates
# with a minimum of .25
dispPriorVar <- pmax((varLogDispEsts - expVarLogDisp), 0.25)
} else {
# we have m = p, so do not try to subtract sampling variance
dispPriorVar <- varLogDispEsts
expVarLogDisp <- 0
}
dispPriorVar
}
#' Wald test for the GLM coefficients
#'
#' This function tests for significance of coefficients in a Negative
#' Binomial GLM, using previously calculated \code{\link{sizeFactors}}
#' (or \code{\link{normalizationFactors}})
#' and dispersion estimates. See \code{\link{DESeq}} for the GLM formula.
#'
#' The fitting proceeds as follows: standard maximum likelihood estimates
#' for GLM coefficients (synonymous with "beta", "log2 fold change", "effect size")
#' are calculated.
#' Then, optionally, a zero-centered Normal prior distribution
#' (\code{betaPrior}) is assumed for the coefficients other than the intercept.
#'
#' Note that this posterior log2 fold change
#' estimation is now not the default setting for \code{nbinomWaldTest},
#' as the standard workflow for coefficient shrinkage has moved to
#' an additional function \code{link{lfcShrink}}.
#'
#' For calculating Wald test p-values, the coefficients are scaled by their
#' standard errors and then compared to a standard Normal distribution.
#' The \code{\link{results}}
#' function without any arguments will automatically perform a contrast of the
#' last level of the last variable in the design formula over the first level.
#' The \code{contrast} argument of the \code{\link{results}} function can be used
#' to generate other comparisons.
#'
#' The Wald test can be replaced with the \code{\link{nbinomLRT}}
#' for an alternative test of significance.
#'
#' Notes on the log2 fold change prior:
#'
#' The variance of the prior distribution for each
#' non-intercept coefficient is calculated using the observed
#' distribution of the maximum likelihood coefficients.
#' The final coefficients are then maximum a posteriori estimates
#' using this prior (Tikhonov/ridge regularization).
#' See below for details on the
#' prior variance and the Methods section of the DESeq2 manuscript for more detail.
#' The use of a prior has little effect on genes with high counts and helps to
#' moderate the large spread in coefficients for genes with low counts.
#'
#' The prior variance is calculated by matching the 0.05 upper quantile
#' of the observed MLE coefficients to a zero-centered Normal distribution.
#' In a change of methods since the 2014 paper,
#' the weighted upper quantile is calculated using the
#' \code{wtd.quantile} function from the Hmisc package
#' (function has been copied into DESeq2 to avoid extra dependencies).
#' The weights are the inverse of the expected variance of log counts, so the inverse of
#' \eqn{1/\bar{\mu} + \alpha_{tr}}{1/mu-bar + alpha_tr} using the mean of
#' normalized counts and the trended dispersion fit. The weighting ensures
#' that noisy estimates of log fold changes from small count genes do not
#' overly influence the calculation of the prior variance.
#' See \code{\link{estimateBetaPriorVar}}.
#' The final prior variance for a factor level is the average of the
#' estimated prior variance over all contrasts of all levels of the factor.
#'
#' When a log2 fold change prior is used (betaPrior=TRUE),
#' then \code{nbinomWaldTest} will by default use expanded model matrices,
#' as described in the \code{modelMatrixType} argument, unless this argument
#' is used to override the default behavior.
#' This ensures that log2 fold changes will be independent of the choice
#' of reference level. In this case, the beta prior variance for each factor
#' is calculated as the average of the mean squared maximum likelihood
#' estimates for each level and every possible contrast.
#'
#' @param object a DESeqDataSet
#' @param betaPrior whether or not to put a zero-mean normal prior on
#' the non-intercept coefficients
#' @param betaPriorVar a vector with length equal to the number of
#' model terms including the intercept.
#' betaPriorVar gives the variance of the prior on the sample betas
#' on the log2 scale. if missing (default) this is estimated from the data
#' @param modelMatrix an optional matrix, typically this is set to NULL
#' and created within the function
#' @param modelMatrixType either "standard" or "expanded", which describe
#' how the model matrix, X of the formula in \code{\link{DESeq}}, is
#' formed. "standard" is as created by \code{model.matrix} using the
#' design formula. "expanded" includes an indicator variable for each
#' level of factors in addition to an intercept.
#' betaPrior must be set to TRUE in order for expanded model matrices
#' to be fit.
#' @param betaTol control parameter defining convergence
#' @param maxit the maximum number of iterations to allow for convergence of the
#' coefficient vector
#' @param useOptim whether to use the native optim function on rows which do not
#' converge within maxit
#' @param quiet whether to print messages at each step
#' @param useT whether to use a t-distribution as a null distribution,
#' for significance testing of the Wald statistics.
#' If FALSE, a standard normal null distribution is used.
#' See next argument \code{df} for information about which t is used.
#' If \code{useT=TRUE} then further calls to \code{\link{results}}
#' will make use of \code{mcols(object)$tDegreesFreedom} that is stored
#' by \code{nbinomWaldTest}.
#' @param df the degrees of freedom for the t-distribution.
#' This can be of length 1 or the number of rows of \code{object}.
#' If this is not specified, the degrees of freedom will be set
#' by the number of samples minus the number of columns of the design
#' matrix used for dispersion estimation. If \code{"weights"} are included in
#' the \code{assays(object)}, then the sum of the weights is used in lieu
#' of the number of samples.
#' @param useQR whether to use the QR decomposition on the design
#' matrix X while fitting the GLM
#' @param minmu lower bound on the estimated count while fitting the GLM
#'
#' @return a DESeqDataSet with results columns accessible
#' with the \code{\link{results}} function. The coefficients and standard errors are
#' reported on a log2 scale.
#'
#' @seealso \code{\link{DESeq}}, \code{\link{nbinomLRT}}
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet()
#' dds <- estimateSizeFactors(dds)
#' dds <- estimateDispersions(dds)
#' dds <- nbinomWaldTest(dds)
#' res <- results(dds)
#'
#' @export
nbinomWaldTest <- function(object,
betaPrior=FALSE, betaPriorVar,
modelMatrix=NULL, modelMatrixType,
betaTol=1e-8, maxit=100, useOptim=TRUE, quiet=FALSE,
useT=FALSE, df, useQR=TRUE, minmu=0.5) {
if (is.null(dispersions(object))) {
stop("testing requires dispersion estimates, first call estimateDispersions()")
}
stopifnot(length(maxit)==1)
# in case the class of the mcols(mcols(object)) are not character
object <- sanitizeRowRanges(object)
if ("results" %in% mcols(mcols(object))$type) {
if (!quiet) message("found results columns, replacing these")
object <- removeResults(object)
}
if (is.null(mcols(object)$allZero)) {
object <- getBaseMeansAndVariances(object)
}
# only continue on the rows with non-zero row mean
objectNZ <- object[!mcols(object)$allZero,,drop=FALSE]
# model matrix not provided...
if (is.null(modelMatrix)) {
modelAsFormula <- TRUE
termsOrder <- attr(terms.formula(design(object)),"order")
interactionPresent <- any(termsOrder > 1)
if (missing(betaPrior)) {
betaPrior <- FALSE
}
# run some tests common to DESeq, nbinomWaldTest, nbinomLRT
designAndArgChecker(object, betaPrior)
# what kind of model matrix to use
stopifnot(is.logical(betaPrior))
blindDesign <- design(object) == formula(~ 1)
if (blindDesign) {
betaPrior <- FALSE
}
if (missing(modelMatrixType) || is.null(modelMatrixType)) {
modelMatrixType <- if (betaPrior) {
"expanded"
} else {
"standard"
}
}
if (modelMatrixType == "expanded" & !betaPrior) {
stop("expanded model matrices require a beta prior")
}
# store modelMatrixType so it can be accessed by estimateBetaPriorVar
attr(object, "modelMatrixType") <- modelMatrixType
hasIntercept <- attr(terms(design(object)),"intercept") == 1
renameCols <- hasIntercept
} else {
# modelMatrix is not NULL, user-supplied
if (missing(betaPrior)) {
betaPrior <- FALSE
}
if (betaPrior) {
if (missing(betaPriorVar)) stop("user-supplied model matrix with betaPrior=TRUE requires supplying betaPriorVar")
}
modelAsFormula <- FALSE
attr(object, "modelMatrixType") <- "user-supplied"
renameCols <- FALSE
}
if (!betaPrior) {
# fit the negative binomial GLM without a prior
# (in actuality a very wide prior with standard deviation 1e3 on log2 fold changes)
fit <- fitNbinomGLMs(objectNZ,
betaTol=betaTol, maxit=maxit,
useOptim=useOptim, useQR=useQR,
renameCols=renameCols,
modelMatrix=modelMatrix,
minmu=minmu)
H <- fit$hat_diagonals
mu <- fit$mu
modelMatrix <- fit$modelMatrix
modelMatrixNames <- fit$modelMatrixNames
# record the wide prior variance which was used in fitting
betaPriorVar <- rep(1e6, ncol(fit$modelMatrix))
} else {
priorFitList <- fitGLMsWithPrior(object=object,
betaTol=betaTol, maxit=maxit,
useOptim=useOptim, useQR=useQR,
betaPriorVar=betaPriorVar,
modelMatrix=modelMatrix,
minmu=minmu)
fit <- priorFitList$fit
H <- priorFitList$H
mu <- priorFitList$mu
betaPriorVar <- priorFitList$betaPriorVar
modelMatrix <- priorFitList$modelMatrix
mleBetaMatrix <- priorFitList$mleBetaMatrix
# will add the MLE betas, so remove any which exist already
# (possibly coming from estimateMLEForBetaPriorVar)
mcols(object) <- mcols(object)[,grep("MLE_",names(mcols(object)),invert=TRUE)]
}
# store 'mu' and 'H', the hat matrix diagonals
dimnames(mu) <- NULL
assays(objectNZ, withDimnames=FALSE)[["mu"]] <- mu
assays(object, withDimnames=FALSE)[["mu"]] <- buildMatrixWithNARows(mu, mcols(object)$allZero)
dimnames(H) <- NULL
assays(objectNZ, withDimnames=FALSE)[["H"]] <- H
assays(object, withDimnames=FALSE)[["H"]] <- buildMatrixWithNARows(H, mcols(object)$allZero)
# store the prior variance directly as an attribute
# of the DESeqDataSet object, so it can be pulled later by
# the results function (necessary for setting max Cook's distance)
attr(object,"betaPrior") <- betaPrior
attr(object,"betaPriorVar") <- betaPriorVar
attr(object,"modelMatrix") <- modelMatrix
attr(object,"test") <- "Wald"
# calculate Cook's distance
dispModelMatrix <- if (modelAsFormula) {
getModelMatrix(object)
} else {
modelMatrix
}
attr(object,"dispModelMatrix") <- dispModelMatrix
cooks <- calculateCooksDistance(objectNZ, H, dispModelMatrix)
# record maximum Cook's
maxCooks <- recordMaxCooks(design(object), colData(object), dispModelMatrix, cooks, nrow(objectNZ))
# store Cook's distance for each sample
assays(object, withDimnames=FALSE)[["cooks"]] <- buildMatrixWithNARows(cooks, mcols(object)$allZero)
# add betas, standard errors and Wald p-values to the object
modelMatrixNames <- colnames(modelMatrix)
betaMatrix <- fit$betaMatrix
colnames(betaMatrix) <- modelMatrixNames
betaSE <- fit$betaSE
colnames(betaSE) <- paste0("SE_",modelMatrixNames)
WaldStatistic <- betaMatrix/betaSE
colnames(WaldStatistic) <- paste0("WaldStatistic_",modelMatrixNames)
#################################
## t distribution for p-values ##
#################################
if (useT) {
# if the `df` was provided to nbinomWaldTest...
if (!missing(df)) {
stopifnot(length(df) == 1 | length(df) == nrow(object))
if (length(df) == 1) {
df <- rep(df, nrow(objectNZ))
} else {
# the `WaldStatistic` vector is along nonzero rows of `object`
df <- df[!mcols(object)$allZero]
}
} else {
# df was missing, so compute it from the number of samples (w.r.t. weights)
# and the number of coefficients
if ("weights" %in% assayNames(object)) {
# this checks that weights are OK and normalizes to have rowMax == 1
# (although this has already happened earlier in estDispGeneEst and estDispMAP...
wlist <- getAndCheckWeights(objectNZ, dispModelMatrix)
num.samps <- rowSums(wlist$weights)
} else {
num.samps <- rep(ncol(object), nrow(objectNZ))
}
df <- num.samps - ncol(dispModelMatrix)
}
df <- ifelse(df > 0, df, NA)
stopifnot(length(df) == nrow(WaldStatistic))
# use a t distribution to calculate the p-value
WaldPvalue <- 2*pt(abs(WaldStatistic),df=df,lower.tail=FALSE)
} else {
# the default DESeq2 p-value: use the standard Normal
WaldPvalue <- 2*pnorm(abs(WaldStatistic),lower.tail=FALSE)
}
colnames(WaldPvalue) <- paste0("WaldPvalue_",modelMatrixNames)
betaConv <- fit$betaConv
if (any(!betaConv)) {
if (!quiet) message(paste(sum(!betaConv),"rows did not converge in beta, labelled in mcols(object)$betaConv. Use larger maxit argument with nbinomWaldTest"))
}
mleBetas <- if (betaPrior) {
matrixToList(mleBetaMatrix)
} else {
NULL
}
# if useT need to add the t degrees of freedom to the end of resultsList
tDFList <- if (useT) list(tDegreesFreedom=df) else NULL
resultsList <- c(matrixToList(betaMatrix),
matrixToList(betaSE),
mleBetas,
matrixToList(WaldStatistic),
matrixToList(WaldPvalue),
list(betaConv = betaConv,
betaIter = fit$betaIter,
deviance = -2 * fit$logLike,
maxCooks = maxCooks),
tDFList)
WaldResults <- buildDataFrameWithNARows(resultsList, mcols(object)$allZero)
modelMatrixNamesSpaces <- gsub("_"," ",modelMatrixNames)
lfcType <- if (attr(object,"betaPrior")) "MAP" else "MLE"
coefInfo <- paste(paste0("log2 fold change (",lfcType,"):"),modelMatrixNamesSpaces)
seInfo <- paste("standard error:",modelMatrixNamesSpaces)
mleInfo <- if (betaPrior) {
gsub("_"," ",colnames(mleBetaMatrix))
} else {
NULL
}
statInfo <- paste("Wald statistic:",modelMatrixNamesSpaces)
pvalInfo <- paste("Wald test p-value:",modelMatrixNamesSpaces)
tDFDescription <- if (useT) "t degrees of freedom for Wald test" else NULL
mcolsWaldResults <- DataFrame(type = rep("results",ncol(WaldResults)),
description = c(coefInfo, seInfo, mleInfo, statInfo, pvalInfo,
"convergence of betas",
"iterations for betas",
"deviance for the fitted model",
"maximum Cook's distance for row",
tDFDescription))
mcols(WaldResults) <- mcolsWaldResults
mcols(object) <- cbind(mcols(object),WaldResults)
return(object)
}
#' Steps for estimating the beta prior variance
#'
#' These lower-level functions are called within \code{\link{DESeq}} or \code{\link{nbinomWaldTest}}.
#' End users should use those higher-level function instead.
#' NOTE: \code{estimateBetaPriorVar} returns a numeric vector, not a DESEqDataSet!
#' For advanced users: to use these functions, first run \code{estimateMLEForBetaPriorVar}
#' and then run \code{estimateBetaPriorVar}.
#'
#' @param object a DESeqDataSet
#'
#' @param maxit as defined in \code{link{nbinomWaldTest}}
#' @param useOptim as defined in \code{link{nbinomWaldTest}}
#' @param useQR as defined in \code{link{nbinomWaldTest}}
#' @param modelMatrixType an optional override for the type which is set internally
#'
#' @param betaPriorMethod the method for calculating the beta prior variance,
#' either "quanitle" or "weighted":
#' "quantile" matches a normal distribution using the upper quantile of the finite MLE betas.
#' "weighted" matches a normal distribution using the upper quantile, but weighting by the variance of the MLE betas.
#' @param upperQuantile the upper quantile to be used for the
#' "quantile" or "weighted" method of beta prior variance estimation
#' @param modelMatrix an optional matrix, typically this is set to NULL
#' and created within the function
#'
#' @return for \code{estimateMLEForBetaPriorVar}, a DESeqDataSet, with the
#' necessary information stored in order to calculate the prior variance.
#' for \code{estimateBetaPriorVar}, the vector of variances for the prior
#' on the betas in the \code{\link{DESeq}} GLM
#'
#' @aliases estimateBetaPriorVar estimateMLEForBetaPriorVar
#'
#' @export
estimateBetaPriorVar <- function(object,
betaPriorMethod=c("weighted","quantile"),
upperQuantile=0.05,
modelMatrix=NULL) {
objectNZ <- object[!mcols(object)$allZero,,drop=FALSE]
betaMatrix <- as.matrix(mcols(objectNZ)[,grep("MLE_", names(mcols(object))),drop=FALSE])
colnamesBM <- colnames(betaMatrix)
colnamesBM <- gsub("MLE_(.*)","\\1",colnamesBM)
# renaming in reverse:
# make these standard colnames as from model.matrix
convertNames <- renameModelMatrixColumns(colData(object),design(object))
colnamesBM <- sapply(colnamesBM, function(x) {
if (x %in% convertNames$to) {
convertNames$from[convertNames$to == x]
} else {
x
}
})
colnames(betaMatrix) <- colnamesBM
# this is the model matrix from an MLE run
if (is.null(modelMatrix)) {
modelMatrix <- getModelMatrix(object)
}
modelMatrixType <- attr(object, "modelMatrixType")
betaPriorMethod <- match.arg(betaPriorMethod, choices=c("weighted","quantile"))
# estimate the variance of the prior on betas
# if expanded, first calculate LFC for all possible contrasts
if (modelMatrixType == "expanded") {
betaMatrix <- addAllContrasts(objectNZ, betaMatrix)
}
# weighting by 1/Var(log(K))
# Var(log(K)) ~ Var(K)/mu^2 = 1/mu + alpha
# and using the fitted alpha
dispFit <- mcols(objectNZ)$dispFit
if (is.null(dispFit)) {
# betaPrior routine could have been called w/o the dispersion fitted trend
dispFit <- mean(dispersions(objectNZ))
}
varlogk <- 1/mcols(objectNZ)$baseMean + dispFit
weights <- 1/varlogk
betaPriorVar <- if (nrow(betaMatrix) > 1) {
apply(betaMatrix, 2, function(x) {
# this test removes genes which have betas
# tending to +/- infinity
useFinite <- abs(x) < 10
# if no more betas pass test, return wide prior
if (sum(useFinite) == 0 ) {
return(1e6)
} else {
if (betaPriorMethod=="quantile") {
return(matchUpperQuantileForVariance(x[useFinite],upperQuantile))
} else if (betaPriorMethod=="weighted") {
return(matchWeightedUpperQuantileForVariance(x[useFinite],weights[useFinite],upperQuantile))
}
}
})
} else {
(betaMatrix)^2
}
names(betaPriorVar) <- colnames(betaMatrix)
# intercept set to wide prior
if ("Intercept" %in% names(betaPriorVar)) {
betaPriorVar[which(names(betaPriorVar) == "Intercept")] <- 1e6
}
# do the same for incoming model matrices
# where intercept may be named "(Intercept)" via model.matrix
if ("(Intercept)" %in% names(betaPriorVar)) {
betaPriorVar[which(names(betaPriorVar) == "(Intercept)")] <- 1e6
}
if (modelMatrixType == "expanded") {
# bring over beta priors from the GLM fit without prior.
# for factors: prior variance of each level are the average of the
# prior variances for the levels present in the previous GLM fit
betaPriorExpanded <- averagePriorsOverLevels(objectNZ, betaPriorVar)
betaPriorVar <- betaPriorExpanded
}
betaPriorVar
}
#' @rdname estimateBetaPriorVar
#' @export
estimateMLEForBetaPriorVar <- function(object, maxit=100, useOptim=TRUE, useQR=TRUE,
modelMatrixType=NULL) {
# this function copies code from other functions,
# in order to allow parallelization
objectNZ <- object[!mcols(object)$allZero,,drop=FALSE]
if (is.null(modelMatrixType)) {
# this code copied from nbinomWaldTest()
blindDesign <- design(object) == formula(~ 1)
mmTypeTest <- !blindDesign
modelMatrixType <- if (mmTypeTest) {
"expanded"
} else {
"standard"
}
}
attr(object, "modelMatrixType") <- modelMatrixType
# this code copied from fitGLMsWithPrior()
fit <- fitNbinomGLMs(objectNZ, maxit=maxit, useOptim=useOptim, useQR=useQR,
renameCols = (modelMatrixType == "standard"))
modelMatrix <- fit$modelMatrix
modelMatrixNames <- colnames(modelMatrix)
H <- fit$hat_diagonal
betaMatrix <- fit$betaMatrix
modelMatrixNames[modelMatrixNames == "(Intercept)"] <- "Intercept"
modelMatrixNames <- make.names(modelMatrixNames)
colnames(betaMatrix) <- modelMatrixNames
convertNames <- renameModelMatrixColumns(colData(object),
design(objectNZ))
convertNames <- convertNames[convertNames$from %in% modelMatrixNames,,drop=FALSE]
modelMatrixNames[match(convertNames$from, modelMatrixNames)] <- convertNames$to
mleBetaMatrix <- fit$betaMatrix
colnames(mleBetaMatrix) <- paste0("MLE_",modelMatrixNames)
# remove any MLE columns if they exist
mcols(object) <- mcols(object)[,grep("MLE_",names(mcols(object)),invert=TRUE)]
mcols(object) <- cbind(mcols(object), buildDataFrameWithNARows(DataFrame(mleBetaMatrix), mcols(object)$allZero))
assays(object, withDimnames=FALSE)[["H"]] <- buildMatrixWithNARows(H, mcols(object)$allZero)
object
}
#' Likelihood ratio test (chi-squared test) for GLMs
#'
#' This function tests for significance of change in deviance between a
#' full and reduced model which are provided as \code{formula}.
#' Fitting uses previously calculated \code{\link{sizeFactors}} (or \code{\link{normalizationFactors}})
#' and dispersion estimates.
#'
#' The difference in deviance is compared to a chi-squared distribution
#' with df = (reduced residual degrees of freedom - full residual degrees of freedom).
#' This function is comparable to the \code{nbinomGLMTest} of the previous version of DESeq
#' and an alternative to the default \code{\link{nbinomWaldTest}}.
#'
#' @param object a DESeqDataSet
#' @param full the full model formula, this should be the formula in
#' \code{design(object)}.
#' alternatively, can be a matrix
#' @param reduced a reduced formula to compare against, e.g.
#' the full model with a term or terms of interest removed.
#' alternatively, can be a matrix
#' @param betaTol control parameter defining convergence
#' @param maxit the maximum number of iterations to allow for convergence of the
#' coefficient vector
#' @param useOptim whether to use the native optim function on rows which do not
#' converge within maxit
#' @param quiet whether to print messages at each step
#' @param useQR whether to use the QR decomposition on the design
#' matrix X while fitting the GLM
#' @param minmu lower bound on the estimated count while fitting the GLM
#' @param type either "DESeq2" or "glmGamPoi". If \code{type = "DESeq2"} a
#' classical likelihood ratio test based on the Chi-squared distribution is
#' conducted. If \code{type = "glmGamPoi"} and previously the dispersion has
#' been estimated with glmGamPoi as well, a quasi-likelihood ratio test based
#' on the F-distribution is conducted. It is supposed to be more accurate, because
#' it takes the uncertainty of dispersion estimate into account in the same way
#' that a t-test improves upon a Z-test.
#'
#' @return a DESeqDataSet with new results columns accessible
#' with the \code{\link{results}} function. The coefficients and standard errors are
#' reported on a log2 scale.
#'
#' @seealso \code{\link{DESeq}}, \code{\link{nbinomWaldTest}}
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet()
#' dds <- estimateSizeFactors(dds)
#' dds <- estimateDispersions(dds)
#' dds <- nbinomLRT(dds, reduced = ~ 1)
#' res <- results(dds)
#'
#' @export
nbinomLRT <- function(object, full=design(object), reduced,
betaTol=1e-8, maxit=100, useOptim=TRUE, quiet=FALSE,
useQR=TRUE,
minmu=if (type=="glmGamPoi") 1e-6 else 0.5,
type = c("DESeq2", "glmGamPoi")) {
type <- match.arg(type, c("DESeq2", "glmGamPoi"))
if (is.null(dispersions(object))) {
stop("testing requires dispersion estimates, first call estimateDispersions()")
}
if (missing(reduced)) {
stop("provide a reduced formula for the LRT, e.g. nbinomLRT(object, reduced= ~1)")
}
# in case the class of the mcols(mcols(object)) are not character
object <- sanitizeRowRanges(object)
# run check on the formula
modelAsFormula <- !(is.matrix(full) & is.matrix(reduced))
if (modelAsFormula) {
checkLRT(full, reduced)
# run some tests common to DESeq, nbinomWaldTest, nbinomLRT
designAndArgChecker(object, betaPrior=FALSE)
# try to form model matrices, test for difference
# in residual degrees of freedom
fullModelMatrix <- stats::model.matrix.default(full, data=as.data.frame(colData(object)))
reducedModelMatrix <- stats::model.matrix.default(reduced, data=as.data.frame(colData(object)))
df <- ncol(fullModelMatrix) - ncol(reducedModelMatrix)
} else {
df <- ncol(full) - ncol(reduced)
}
if (df < 1) stop("less than one degree of freedom, perhaps full and reduced models are not in the correct order")
if (any(mcols(mcols(object))$type == "results")) {
if (!quiet) message("found results columns, replacing these")
object <- removeResults(object)
}
if (is.null(mcols(object)$allZero)) {
object <- getBaseMeansAndVariances(object)
}
if (modelAsFormula) {
modelMatrixType <- "standard"
# check for intercept
hasIntercept <- attr(terms(design(object)),"intercept") == 1
renameCols <- hasIntercept
} else {
modelMatrixType <- "user-supplied"
renameCols <- FALSE
}
# store modelMatrixType
attr(object,"modelMatrixType") <- modelMatrixType
# only continue on the rows with non-zero row mean
objectNZ <- object[!mcols(object)$allZero,,drop=FALSE]
if (type == "DESeq2") {
if (modelAsFormula) {
fullModel <- fitNbinomGLMs(objectNZ, modelFormula=full,
renameCols=renameCols,
betaTol=betaTol, maxit=maxit,
useOptim=useOptim, useQR=useQR,
warnNonposVar=FALSE, minmu=minmu)
modelMatrix <- fullModel$modelMatrix
reducedModel <- fitNbinomGLMs(objectNZ, modelFormula=reduced,
betaTol=betaTol, maxit=maxit,
useOptim=useOptim, useQR=useQR,
warnNonposVar=FALSE, minmu=minmu)
reducedModelMatrix <- reducedModel$modelMatrix
} else {
fullModel <- fitNbinomGLMs(objectNZ, modelMatrix=full,
renameCols=FALSE,
betaTol=betaTol, maxit=maxit,
useOptim=useOptim, useQR=useQR,
warnNonposVar=FALSE, minmu=minmu)
modelMatrix <- full
reducedModel <- fitNbinomGLMs(objectNZ, modelMatrix=reduced,
renameCols=FALSE,
betaTol=betaTol, maxit=maxit,
useOptim=useOptim, useQR=useQR,
warnNonposVar=FALSE, minmu=minmu)
reducedModelMatrix <- reduced
}
# calculate LRT statistic and p-values
LRTStatistic <- (2 * (fullModel$logLike - reducedModel$logLike))
LRTPvalue <- pchisq(LRTStatistic, df=df, lower.tail=FALSE)
deviance <- -2 * fullModel$logLike
### Handle Hat matrix and Cook distances
H <- fullModel$hat_diagonals
# calculate Cook's distance
dispModelMatrix <- modelMatrix
attr(object,"dispModelMatrix") <- dispModelMatrix
cooks <- calculateCooksDistance(objectNZ, H, dispModelMatrix)
# record maximum of Cook's
maxCooks <- recordMaxCooks(design(object), colData(object), dispModelMatrix, cooks, nrow(objectNZ))
# store hat matrix diagonals
assays(object, withDimnames=FALSE)[["H"]] <- buildMatrixWithNARows(H, mcols(object)$allZero)
# store Cook's distance for each sample
assays(object, withDimnames=FALSE)[["cooks"]] <- buildMatrixWithNARows(cooks, mcols(object)$allZero)
} else if (type == "glmGamPoi") {
sf <- sizeFactors(objectNZ)
disp_trend <- mcols(objectNZ)$dispFit
fit_full <- glmGamPoi::glm_gp(objectNZ, design = full, size_factors = sf,
overdispersion = disp_trend,
overdispersion_shrinkage = FALSE)
# Get the stuff from objectNZ that is saved there by estimateDispersionMAP()
fit_full$overdispersion_shrinkage_list <- list(ql_df0 = attr(object, "quasiLikelihood_df0"),
ql_disp_shrunken = mcols(objectNZ)$qlDispMAP,
dispersion_trend = mcols(objectNZ)$dispFit)
if (any(vapply(fit_full$overdispersion_shrinkage_list, is.null, FUN.VALUE = FALSE))) {
stop("nbinomLRT of type 'glmGamPoi' called, but one or more of 'attr(object, \"quasiLikelihood_df0\")', ",
"'mcols(object)$qlDispMAP', or 'mcols(object)$dispFit' was null.\n",
"Please call 'estimateDispersions(dds, fitType = \"glmGamPoi\")' before you call 'nbinomLRT' with ",
"type \"glmGamPoi\"")
}
qlr <- glmGamPoi::test_de(fit_full, reduced = reduced, verbose = ! quiet)
LRTStatistic <- qlr$f_statistic
LRTPvalue <- qlr$pval
modelMatrix <- fit_full$model_matrix
reducedModelMatrix <- if (is.matrix(reduced)) {
reduced
} else {
stats::model.matrix.default(reduced, data=as.data.frame(colData(objectNZ)))
}
fullModel <- list(betaMatrix = fit_full$Beta / log(2), # Make sure Beta are on log2-scale
betaSE = array(NA, dim(fit_full$Beta), dimnames = list(rownames(fit_full$Beta), paste0("SE_",colnames(fit_full$Beta)))),
mu = fit_full$Mu, betaConv = rep(TRUE, nrow(objectNZ)), betaIter = rep(NA, nrow(objectNZ)))
reducedModel <- list(betaConv = rep(TRUE, nrow(objectNZ)))
deviance <- fit_full$deviances
maxCooks <- rep(NA, nrow(objectNZ))
dispModelMatrix <- modelMatrix
attr(object,"dispModelMatrix") <- dispModelMatrix
}
betaPriorVar <- rep(1e6, ncol(modelMatrix))
attr(object,"betaPrior") <- FALSE
attr(object,"betaPriorVar") <- betaPriorVar
attr(object,"modelMatrix") <- modelMatrix
attr(object,"reducedModelMatrix") <- reducedModelMatrix
attr(object,"test") <- "LRT"
# store mu in case the user did not call estimateDispersionsGeneEst
dimnames(fullModel$mu) <- NULL
assays(objectNZ, withDimnames=FALSE)[["mu"]] <- fullModel$mu
assays(object, withDimnames=FALSE)[["mu"]] <- buildMatrixWithNARows(fullModel$mu, mcols(object)$allZero)
if (any(!fullModel$betaConv)) {
if (!quiet) message(paste(sum(!fullModel$betaConv),"rows did not converge in beta, labelled in mcols(object)$fullBetaConv. Use larger maxit argument with nbinomLRT"))
}
# no need to store additional betas (no beta prior)
mleBetas <- NULL
# continue storing LRT results
resultsList <- c(matrixToList(fullModel$betaMatrix),
matrixToList(fullModel$betaSE),
mleBetas,
list(LRTStatistic = LRTStatistic,
LRTPvalue = LRTPvalue,
fullBetaConv = fullModel$betaConv,
reducedBetaConv = reducedModel$betaConv,
betaIter = fullModel$betaIter,
deviance = deviance,
maxCooks = maxCooks))
LRTResults <- buildDataFrameWithNARows(resultsList, mcols(object)$allZero)
modelComparison <- if (modelAsFormula) {
paste0("'",paste(as.character(full),collapse=" "),
"' vs '", paste(as.character(reduced),collapse=" "),"'")
} else {
"full vs reduced"
}
modelMatrixNames <- colnames(fullModel$betaMatrix)
modelMatrixNamesSpaces <- gsub("_"," ",modelMatrixNames)
lfcType <- "MLE"
coefInfo <- paste(paste0("log2 fold change (",lfcType,"):"),modelMatrixNamesSpaces)
seInfo <- paste("standard error:",modelMatrixNamesSpaces)
mleInfo <- NULL
statInfo <- paste("LRT statistic:",modelComparison)
pvalInfo <- paste("LRT p-value:",modelComparison)
mcols(LRTResults) <- DataFrame(type = rep("results",ncol(LRTResults)),
description = c(coefInfo, seInfo, mleInfo,
statInfo, pvalInfo,
"convergence of betas for full model",
"convergence of betas for reduced model",
"iterations for betas for full model",
"deviance of the full model",
"maximum Cook's distance for row"))
mcols(object) <- cbind(mcols(object),LRTResults)
return(object)
}
#' Replace outliers with trimmed mean
#'
#' Note that this function is called within \code{\link{DESeq}}, so is not
#' necessary to call on top of a \code{DESeq} call. See the \code{minReplicatesForReplace}
#' argument documented in \code{link{DESeq}}.
#'
#' This function replaces outlier counts flagged by extreme Cook's distances,
#' as calculated by \code{\link{DESeq}}, \code{\link{nbinomWaldTest}}
#' or \code{\link{nbinomLRT}}, with values predicted by the trimmed mean
#' over all samples (and adjusted by size factor or normalization factor).
#' This function replaces the counts in the matrix returned by \code{counts(dds)}
#' and the Cook's distances in \code{assays(dds)[["cooks"]]}. Original counts are
#' preserved in \code{assays(dds)[["originalCounts"]]}.
#'
#' The \code{\link{DESeq}} function calculates a diagnostic measure called
#' Cook's distance for every gene and every sample. The \code{\link{results}}
#' function then sets the p-values to \code{NA} for genes which contain
#' an outlying count as defined by a Cook's distance above a threshold.
#' With many degrees of freedom, i.e. many more samples than number of parameters to
#' be estimated-- it might be undesirable to remove entire genes from the analysis
#' just because their data include a single count outlier.
#' An alternate strategy is to replace the outlier counts
#' with the trimmed mean over all samples, adjusted by the size factor or normalization
#' factor for that sample. The following simple function performs this replacement
#' for the user, for samples which have at least \code{minReplicates} number
#' of replicates (including that sample).
#' For more information on Cook's distance, please see the two
#' sections of the vignette: 'Dealing with count outliers' and 'Count outlier detection'.
#'
#' @param object a DESeqDataSet object, which has already been processed by
#' either DESeq, nbinomWaldTest or nbinomLRT, and therefore contains a matrix
#' contained in \code{assays(dds)[["cooks"]]}. These are the Cook's distances which will
#' be used to define outlier counts.
#' @param trim the fraction (0 to 0.5) of observations to be trimmed from
#' each end of the normalized counts for a gene before the mean is computed
#' @param cooksCutoff the threshold for defining an outlier to be replaced.
#' Defaults to the .99 quantile of the F(p, m - p) distribution, where p is
#' the number of parameters and m is the number of samples.
#' @param minReplicates the minimum number of replicate samples necessary to consider
#' a sample eligible for replacement (including itself). Outlier counts will not be replaced
#' if the sample is in a cell which has less than minReplicates replicates.
#' @param whichSamples optional, a numeric or logical index to specify
#' which samples should have outliers replaced. if missing, this is determined using
#' minReplicates.
#'
#' @seealso \code{\link{DESeq}}
#'
#' @aliases replaceOutliersWithTrimmedMean
#'
#' @return a DESeqDataSet with replaced counts in the slot returned by
#' \code{\link{counts}} and the original counts preserved in
#' \code{assays(dds)[["originalCounts"]]}
#'
#' @export
replaceOutliers <- function(object, trim=.2, cooksCutoff, minReplicates=7, whichSamples) {
if (is.null(attr(object,"modelMatrix")) | !("cooks" %in% assayNames(object))) {
stop("first run DESeq, nbinomWaldTest, or nbinomLRT to identify outliers")
}
if (minReplicates < 3) {
stop("at least 3 replicates are necessary in order to indentify a sample as a count outlier")
}
stopifnot(is.numeric(minReplicates) & length(minReplicates) == 1)
p <- ncol(attr(object,"modelMatrix"))
m <- ncol(object)
if (m <= p) {
assays(object, withDimnames=FALSE)[["originalCounts"]] <- counts(object)
return(object)
}
if (missing(cooksCutoff)) {
cooksCutoff <- qf(.99, p, m - p)
}
idx <- which(assays(object)[["cooks"]] > cooksCutoff)
mcols(object)$replace <- apply(assays(object)[["cooks"]], 1, function(row) any(row > cooksCutoff))
mcols(mcols(object),use.names=TRUE)["replace",] <- DataFrame(type="intermediate",description="had counts replaced")
trimBaseMean <- apply(counts(object,normalized=TRUE),1,mean,trim=trim)
# build a matrix of counts based on the trimmed mean and the size factors
replacementCounts <- if (!is.null(normalizationFactors(object))) {
as.integer(matrix(rep(trimBaseMean,ncol(object)),ncol=ncol(object)) *
normalizationFactors(object))
} else {
as.integer(outer(trimBaseMean, sizeFactors(object), "*"))
}
# replace only those values which fall above the cutoff on Cook's distance
newCounts <- counts(object)
newCounts[idx] <- replacementCounts[idx]
if (missing(whichSamples)) {
whichSamples <- nOrMoreInCell(attr(object,"modelMatrix"), n = minReplicates)
}
stopifnot(is.logical(whichSamples))
object$replaceable <- whichSamples
mcols(colData(object),use.names=TRUE)["replaceable",] <- DataFrame(type="intermediate",
description="outliers can be replaced")
assays(object, withDimnames=FALSE)[["originalCounts"]] <- counts(object)
if (sum(whichSamples) == 0) {
return(object)
}
counts(object)[,whichSamples] <- newCounts[,whichSamples,drop=FALSE]
object
}
#' @export
#' @rdname replaceOutliers
replaceOutliersWithTrimmedMean <- replaceOutliers
###########################################################
# unexported functons
###########################################################
# Get base means and variances
#
# An internally used function to calculate the row means and variances
# from the normalized counts, which requires that \code{\link{estimateSizeFactors}}
# has already been called. Adds these and a logical column if the row sums
# are zero to the mcols of the object.
#
# object a DESeqDataSet object
#
# return a DESeqDataSet object with columns baseMean
# and baseVar in the row metadata columns
getBaseMeansAndVariances <- function(object) {
cts.norm <- counts(object,normalized=TRUE)
if ("weights" %in% assayNames(object)) {
wts <- assays(object)[["weights"]]
cts.norm <- wts * cts.norm
}
meanVarZero <- DataFrame(baseMean = unname(rowMeans(cts.norm)),
baseVar = unname(rowVars(cts.norm)),
allZero = unname(rowSums(counts(object)) == 0))
mcols(meanVarZero) <- DataFrame(type = rep("intermediate",ncol(meanVarZero)),
description = c("mean of normalized counts for all samples",
"variance of normalized counts for all samples",
"all counts for a gene are zero"))
if (all(c("baseMean","baseVar","allZero") %in% names(mcols(object)))) {
mcols(object)[c("baseMean","baseVar","allZero")] <- meanVarZero
} else {
mcols(object) <- cbind(mcols(object),meanVarZero)
}
return(object)
}
estimateNormFactors <- function(counts, normMatrix, locfunc=median, geoMeans, controlGenes) {
sf <- estimateSizeFactorsForMatrix(counts / normMatrix, locfunc=locfunc, geoMeans=geoMeans, controlGenes=controlGenes)
nf <- t( t(normMatrix) * sf )
nf / exp(rowMeans(log(nf)))
}
# Estimate a parametric fit of dispersion to the mean intensity
parametricDispersionFit <- function( means, disps ) {
coefs <- c( .1, 1 )
iter <- 0
while(TRUE) {
residuals <- disps / ( coefs[1] + coefs[2] / means )
good <- which( (residuals > 1e-4) & (residuals < 15) )
# check for glm convergence below to exit while-loop
suppressWarnings({fit <- glm( disps[good] ~ I(1/means[good]),
family=Gamma(link="identity"), start=coefs )})
oldcoefs <- coefs
coefs <- coefficients(fit)
if ( !all( coefs > 0 ) )
stop(simpleError("parametric dispersion fit failed"))
if ( ( sum( log( coefs / oldcoefs )^2 ) < 1e-6 ) & fit$converged )
break
iter <- iter + 1
if ( iter > 10 )
stop(simpleError("dispersion fit did not converge"))
}
names( coefs ) <- c( "asymptDisp", "extraPois" )
ans <- function(q) coefs[1] + coefs[2] / q
attr( ans, "coefficients" ) <- coefs
ans
}
# Local fit of dispersion to the mean intensity
# fitting is done on log dispersion, log mean scale
localDispersionFit <- function( means, disps, minDisp ) {
if (all(disps < minDisp*10)) {
return(rep(minDisp,length(disps)))
}
d <- data.frame(logDisps = log(disps), logMeans = log(means))
fit <- locfit(logDisps ~ logMeans, data=d[disps >= minDisp*10,,drop=FALSE],
weights = means[disps >= minDisp*10])
dispFunction <- function(means) exp(predict(fit, data.frame(logMeans=log(means))))
return(dispFunction)
}
# convenience function for testing the log likelihood
# for a count matrix, mu matrix and vector disp
nbinomLogLike <- function(counts, mu, disp, weights, useWeights) {
if (is.null(disp)) return(NULL)
if (useWeights) {
rowSums(weights * matrix(dnbinom(counts,mu=mu,size=1/disp,
log=TRUE),ncol=ncol(counts)))
} else {
rowSums(matrix(dnbinom(counts,mu=mu,size=1/disp,
log=TRUE),ncol=ncol(counts)))
}
}
# simple function to return a matrix of size factors
# or normalization factors
getSizeOrNormFactors <- function(object) {
if (!is.null(normalizationFactors(object))) {
return(normalizationFactors(object))
} else {
return(matrix(rep(sizeFactors(object),each=nrow(object)),
ncol=ncol(object)))
}
}
# convenience function for building results tables
# out of a list and filling in NA rows
buildDataFrameWithNARows <- function(resultsList, NArows) {
lengths <- sapply(resultsList,length)
if (!all(lengths == lengths[1])) {
stop("lengths of vectors in resultsList must be equal")
}
if (sum(!NArows) != lengths[1]) {
stop("number of non-NA rows must be equal to lengths of vectors in resultsList")
}
if (sum(NArows) == 0) {
return(DataFrame(resultsList))
}
dfFull <- DataFrame(lapply(resultsList, function(x) vector(mode(x), length(NArows))))
dfFull[NArows,] <- NA
dfFull[!NArows,] <- DataFrame(resultsList)
dfFull
}
# convenience function for building larger matrices
# by filling in NA rows
buildMatrixWithNARows <- function(m, NARows) {
mFull <- matrix(NA, ncol=ncol(m), nrow=length(NARows))
mFull[!NARows,] <- m
mFull
}
# convenience function for building larger matrices
# by filling in 0 rows
buildMatrixWithZeroRows <- function(m, zeroRows) {
mFull <- matrix(0, ncol=ncol(m), nrow=length(zeroRows))
mFull[!zeroRows,] <- m
mFull
}
# convenience function for breaking up matrices
# by column and preserving column names
matrixToList <- function(m) {
l <- split(m, col(m))
names(l) <- colnames(m)
l
}
# calculate a robust method of moments dispersion,
# in order to estimate the dispersion excluding
# individual outlier counts which would raise the variance estimate
robustMethodOfMomentsDisp <- function(object, modelMatrix) {
cnts <- counts(object,normalized=TRUE)
# if there are 3 or more replicates in any cell
threeOrMore <- nOrMoreInCell(modelMatrix,n=3)
v <- if (any(threeOrMore)) {
cells <- apply(modelMatrix,1,paste0,collapse="")
cells <- unname(factor(cells,levels=unique(cells)))
levels(cells) <- seq_along(levels(cells))
levelsThreeOrMore <- levels(cells)[table(cells) >= 3]
idx <- cells %in% levelsThreeOrMore
cntsSub <- cnts[,idx,drop=FALSE]
cellsSub <- factor(cells[idx])
trimmedCellVariance(cntsSub, cellsSub)
} else {
trimmedVariance(cnts)
}
m <- rowMeans(cnts)
alpha <- ( v - m ) / m^2
# cannot use the typical minDisp = 1e-8 here or else all counts in the same
# group as the outlier count will get an extreme Cook's distance
minDisp <- 0.04
alpha <- pmax(alpha, minDisp)
alpha
}
trimmedCellVariance <- function(cnts, cells) {
# how much to trim at different n
trimratio <- c(1/3, 1/4, 1/8)
# returns an index for the vector above for three sample size bins
trimfn <- function(n) as.integer(cut(n, breaks=c(0,3.5,23.5,Inf)))
cellMeans <- matrix(sapply(levels(cells), function(lvl) {
n <- sum(cells==lvl)
apply(cnts[,cells==lvl,drop=FALSE],1,mean,trim=trimratio[trimfn(n)])
}),
nrow=nrow(cnts))
qmat <- cellMeans[,as.integer(cells),drop=FALSE]
sqerror <- (cnts - qmat)^2
varEst <- matrix(sapply(levels(cells), function(lvl) {
n <- sum(cells==lvl)
# scale due to trimming of large squares, by e.g. 1/mean(rnorm(1e6)^2,trim=1/8)
scale.c <- c(2.04, 1.86, 1.51)[trimfn(n)]
scale.c * apply(sqerror[,cells==lvl,drop=FALSE],1,mean,trim=trimratio[trimfn(n)])
}),
nrow=nrow(sqerror))
# take the max of variance estimates from cells
# as one condition might have highly variable counts
rowMax(varEst)
}
trimmedVariance <- function(x) {
rm <- apply(x,1,mean,trim=1/8)
sqerror <- (x - rm)^2
# scale due to trimming of large squares
1.51 * apply(sqerror,1,mean,trim=1/8)
}
calculateCooksDistance <- function(object, H, modelMatrix) {
p <- ncol(modelMatrix)
dispersions <- robustMethodOfMomentsDisp(object, modelMatrix)
V <- assays(object)[["mu"]] + dispersions * assays(object)[["mu"]]^2
PearsonResSq <- (counts(object) - assays(object)[["mu"]])^2 / V
cooks <- PearsonResSq / p * H / (1 - H)^2
cooks
}
# this function breaks out the logic for calculating the max Cook's distance:
# the samples over which max Cook's distance is calculated:
#
# Cook's distance is considered for those samples with 3 or more replicates per cell
#
# if m == p or there are no samples over which to calculate max Cook's, then give NA
recordMaxCooks <- function(design, colData, modelMatrix, cooks, numRow) {
samplesForCooks <- nOrMoreInCell(modelMatrix, n=3)
p <- ncol(modelMatrix)
m <- nrow(modelMatrix)
maxCooks <- if ((m > p) & any(samplesForCooks)) {
apply(cooks[,samplesForCooks,drop=FALSE], 1, max)
} else {
rep(NA, numRow)
}
maxCooks
}
# for each sample in the model matrix,
# are there n or more replicates in the same cell
# (including that sample)
# so for a 2 x 3 comparison, the returned vector for n = 3 is:
# FALSE, FALSE, TRUE, TRUE, TRUE
nOrMoreInCell <- function(modelMatrix, n){
row_hash <- apply(modelMatrix, 1, paste0, collapse = "_")
hash_table <- table(row_hash)
numEqual <- as.vector(unname(hash_table[row_hash]))
numEqual >= n
}
# an unexported diagnostic function
# to retrieve the covariance matrix
# for the GLM coefficients of a single row
# only for standard model matrices
covarianceMatrix <- function(object, rowNumber) {
if (attr(object, "modelMatrixType") != "standard")
stop("only for standard model matrices")
# convert coefficients to log scale
coefColumns <- names(mcols(object))[grep("log2 fold change",mcols(mcols(object))$description)]
beta <- log(2) * as.numeric(as.data.frame(mcols(object)[rowNumber,coefColumns,drop=FALSE]))
x <- getModelMatrix(object)
y <- counts(object)[rowNumber,]
sf <- sizeFactors(object)
alpha <- dispersions(object)[rowNumber]
mu.hat <- as.vector(sf * exp(x %*% beta))
minmu <- 0.5
mu.hat[mu.hat < minmu] <- minmu
w <- diag(1/(1/mu.hat^2 * ( mu.hat + alpha * mu.hat^2 )))
betaPriorVar <- attr(object,"betaPriorVar")
ridge <- diag(1/(log(2)^2 * betaPriorVar))
sigma <- solve(t(x) %*% w %*% x + ridge) %*% (t(x) %*% w %*% x) %*% t(solve(t(x) %*% w %*% x + ridge))
# convert back to log2 scale
sigmaLog2Scale <- log2(exp(1))^2 * sigma
sigmaLog2Scale
}
getDesignFactors <- function(object) {
design <- design(object)
designVars <- all.vars(design)
designVarsClass <- sapply(designVars, function(v) class(colData(object)[[v]]))
designVars[designVarsClass == "factor"]
}
# looking at the values of x which are large
# in absolute value, find the zero-centered Normal distribution
# with the matching quantile, and return the variance
# of that Normal distribution
matchUpperQuantileForVariance <- function(x, upperQuantile=.05) {
sdEst <- quantile(abs(x), 1 - upperQuantile) / qnorm(1 - upperQuantile/2)
unname(sdEst)^2
}
matchWeightedUpperQuantileForVariance <- function(x, weights, upperQuantile=.05) {
sdEst <- Hmisc.wtd.quantile(abs(x), weights=weights, 1 - upperQuantile, normwt=TRUE) / qnorm(1 - upperQuantile/2)
unname(sdEst)^2
}
# rough dispersion estimate using counts and fitted values
roughDispEstimate <- function(y, x) {
# must be positive
mu <- linearModelMu(y, x)
mu <- matrix(pmax(1, mu), ncol=ncol(mu))
m <- nrow(x)
p <- ncol(x)
# an alternate rough estimator with higher mean squared or absolute error
# (rowSums( (y - mu)^2/(mu * (m - p)) ) - 1)/rowMeans(mu)
# rough disp ests will be adjusted up to minDisp later
est <- rowSums( ((y - mu)^2 - mu) / mu^2 ) / (m - p)
pmax(est, 0)
}
momentsDispEstimate <- function(object) {
xim <- if (!is.null(normalizationFactors(object))) {
mean(1/colMeans(normalizationFactors(object)))
} else {
mean(1/sizeFactors(object))
}
bv <- mcols(object)$baseVar
bm <- mcols(object)$baseMean
(bv - xim*bm)/bm^2
}
modelMatrixGroups <- function(x) {
factor(unname(apply(x, 1, paste0, collapse="__")))
}
linearModelMu <- function(y, x) {
qrx <- qr(x)
Q <- qr.Q(qrx)
Rinv <- solve(qr.R(qrx))
# old code:
# hatmatrix <- x %*% Rinv %*% t(Q)
# t(hatmatrix %*% t(y))
# Wolfgang Huber's rewrite is up to 2 orders of magnitude faster (Sept 2018):
(y %*% Q) %*% t(x %*% Rinv)
}
linearModelMuNormalized <- function(object, x) {
cts <- counts(object)
norm.cts <- counts(object, normalized=TRUE)
muhat <- linearModelMu(norm.cts, x)
nf <- getSizeOrNormFactors(object)
muhat * nf
}
# checks for LRT formulas, written as function to remove duplicate code
# in DESeq and nbinomLRT
checkLRT <- function(full, reduced) {
reducedNotInFull <- !all.vars(reduced) %in% all.vars(full)
if (any(reducedNotInFull)) {
stop(paste("the following variables in the reduced formula not in the full formula:",
paste(all.vars(reduced)[reducedNotInFull],collapse=", ")))
}
}
# bulky code separated from DESeq()
refitWithoutOutliers <- function(object, test, betaPrior, full, reduced,
quiet, minReplicatesForReplace, modelMatrix, modelMatrixType) {
cooks <- assays(object)[["cooks"]]
object <- replaceOutliers(object, minReplicates=minReplicatesForReplace)
# refit without outliers, if there were any replacements
nrefit <- sum(mcols(object)$replace, na.rm=TRUE)
if ( nrefit > 0 ) {
object <- getBaseMeansAndVariances(object)
newAllZero <- which(mcols(object)$replace & mcols(object)$allZero)
}
# only refit if some of the replacements don't result in all zero counts
# otherwise, these cases are handled by results()
if ( nrefit > 0 && nrefit > length(newAllZero) ) {
if (!quiet) message(paste("-- replacing outliers and refitting for", nrefit,"genes
-- DESeq argument 'minReplicatesForReplace' =",minReplicatesForReplace,"
-- original counts are preserved in counts(dds)"))
# refit on those rows which had replacement
refitReplace <- which(mcols(object)$replace & !mcols(object)$allZero)
objectSub <- object[refitReplace,]
intermediateOrResults <- which(mcols(mcols(objectSub))$type %in% c("intermediate","results"))
mcols(objectSub) <- mcols(objectSub)[,-intermediateOrResults,drop=FALSE]
# estimate gene-wise dispersion
if (!quiet) message("estimating dispersions")
objectSub <- estimateDispersionsGeneEst(objectSub, quiet=quiet, modelMatrix=modelMatrix)
# need to redo fitted dispersion due to changes in base mean
mcols(objectSub)$dispFit <- dispersionFunction(objectSub)(mcols(objectSub)$baseMean)
mcols(mcols(objectSub),use.names=TRUE)["dispFit",] <- DataFrame(type="intermediate",
description="fitted values of dispersion")
dispPriorVar <- attr( dispersionFunction(object), "dispPriorVar" )
# estimate dispersion MAP
objectSub <- estimateDispersionsMAP(objectSub, quiet=quiet,
dispPriorVar=dispPriorVar, modelMatrix=modelMatrix)
# fit GLM
if (!quiet) message("fitting model and testing")
if (test == "Wald") {
betaPriorVar <- attr(object, "betaPriorVar")
objectSub <- nbinomWaldTest(objectSub, betaPrior=betaPrior,
betaPriorVar=betaPriorVar, quiet=quiet,
modelMatrix=modelMatrix,
modelMatrixType=modelMatrixType)
} else if (test == "LRT") {
objectSub <- nbinomLRT(objectSub, full=full, reduced=reduced, quiet=quiet)
}
idx <- match(names(mcols(objectSub)), names(mcols(object)))
mcols(object)[refitReplace, idx] <- mcols(objectSub)
mcols(object)[newAllZero, mcols(mcols(object))$type == "results"] <- NA
# continue to flag if some conditions have less than minReplicatesForReplace
if (all(object$replaceable)) {
mcols(object)$maxCooks <- NA
} else {
replaceCooks <- assays(object)[["cooks"]]
replaceCooks[,object$replaceable] <- 0
mcols(object)$maxCooks <- recordMaxCooks(design(object), colData(object),
attr(object,"dispModelMatrix"), replaceCooks, nrow(object))
}
}
if ( nrefit > 0 ) {
# save the counts used for fitting as replaceCounts
assays(object, withDimnames=FALSE)[["replaceCounts"]] <- counts(object)
assays(object, withDimnames=FALSE)[["replaceCooks"]] <- assays(object)[["cooks"]]
# preserve original counts and Cook's distances
counts(object) <- assays(object)[["originalCounts"]]
assays(object, withDimnames=FALSE)[["cooks"]] <- cooks
# no longer need this assay slot
assays(object)[["originalCounts"]] <- NULL
}
object
}
sanitizeRowRanges <- function(object) {
if (is.null(mcols(mcols(object)))) {
mcols(mcols(object)) <- DataFrame(type=rep("input",ncol(mcols(object))),
description=character(ncol(mcols(object))))
}
class(mcols(mcols(object))$type) <- "character"
class(mcols(mcols(object))$description) <- "character"
mcols(mcols(object))$type[ is.na(mcols(mcols(object))$type) ] <- ""
mcols(mcols(object))$description[ is.na(mcols(mcols(object))$description) ] <- ""
object
}
sanitizeColData <- function(object) {
if (is.null(mcols(colData(object)))) {
mcols(colData(object)) <- DataFrame(type=rep("input",ncol(colData(object))),
description=character(ncol(colData(object))))
}
class(mcols(colData(object))$type) <- "character"
class(mcols(colData(object))$description) <- "character"
mcols(colData(object))$type[ is.na(mcols(colData(object))$type) ] <- ""
mcols(colData(object))$description[ is.na(mcols(colData(object))$description) ] <- ""
object
}
estimateSizeFactorsIterate <- function(object, niter=10, Q=0.05) {
design(object) <- ~ 1
sf <- rep(1, ncol(object))
idx <- rowSums(counts(object)) > 0
cts <- counts(object)[idx,]
for (i in seq_len(niter)) {
sizeFactors(object) <- sf
object <- estimateDispersions(object, fitType="mean", quiet=TRUE)
q <- t(t(assays(object)[["mu"]])/sf)[idx,]
disps <- dispersions(object)[idx]
sf.old <- sf
fn <- function(p) {
sf <- exp(p - mean(p))
mu.new <- t(t(q) * sf)
ll <- matrix(dnbinom(cts, mu=mu.new, size=1/disps, log=TRUE), ncol=ncol(cts))
gene.ll <- rowSums(ll)
sum(gene.ll[ gene.ll > quantile(gene.ll, Q) ])
}
res <- optim(log(sf.old), fn, control=list(fnscale=-1), method="L-BFGS-B")
if (res$convergence != 0) {
stop("iterative size factor normalization did not converge within an iteration")
}
sf <- exp(res$par - mean(res$par))
# loop more than once, and test for convergence
if (i > 1 & sum((log(sf.old) - log(sf))^2) < 1e-4) {
break
} else {
if (i == niter) {
stop("iterative size factor normalization did not converge")
}
}
}
sf
}
checkFullRank <- function(modelMatrix) {
if (qr(modelMatrix)$rank < ncol(modelMatrix)) {
if (any(apply(modelMatrix, 2, function(col) all(col == 0)))) {
stop("the model matrix is not full rank, so the model cannot be fit as specified.
Levels or combinations of levels without any samples have resulted in
column(s) of zeros in the model matrix.
Please read the vignette section 'Model matrix not full rank':
vignette('DESeq2')")
} else {
stop("the model matrix is not full rank, so the model cannot be fit as specified.
One or more variables or interaction terms in the design formula are linear
combinations of the others and must be removed.
Please read the vignette section 'Model matrix not full rank':
vignette('DESeq2')")
}
}
}
designAndArgChecker <- function(object, betaPrior) {
termsOrder <- attr(terms.formula(design(object)),"order")
hasIntercept <- attr(terms(design(object)),"intercept") == 1
interactionPresent <- any(termsOrder > 1)
if (betaPrior & !hasIntercept) {
stop("betaPrior=TRUE can only be used if the design has an intercept.
if specifying + 0 in the design formula, use betaPrior=FALSE")
}
if (betaPrior & interactionPresent) {
stop("betaPrior=FALSE should be used for designs with interactions")
}
if (!betaPrior) {
mm <- stats::model.matrix(design(object), data=as.data.frame(colData(object)))
q <- qr(mm)
if (q$rank < ncol(mm))
stop("full model matrix is less than full rank")
}
design <- design(object)
designVars <- all.vars(design)
if (length(designVars) > 0) {
if (any(sapply(designVars, function(v) any(is.na(colData(object)[[v]]))))) {
stop("variables in the design formula cannot have NA values")
}
designFactors <- designVars[sapply(designVars, function(v) is(colData(object)[[v]], "factor"))]
if (length(designFactors) > 0 && any(sapply(designFactors,function(v) any(table(colData(object)[[v]]) == 0)))) {
stop("factors in design formula must have samples for each level.
this error can arise when subsetting a DESeqDataSet, in which
all the samples for one or more levels of a factor in the design were removed.
if this was intentional, use droplevels() to remove these levels, e.g.:
dds$condition <- droplevels(dds$condition)
")
}
if (any(sapply(designVars, function(v) is(colData(object)[[v]], "ordered")))) {
stop("the design formula contains an ordered factor. The internal steps
do not work on ordered factors as a formula. Instead you should provide a matrix to
the 'design' slot or to the 'full' argument of DESeq(), constructed using model.matrix.")
}
}
}
getModelMatrix <- function(object) {
if (is(design(object), "matrix")) {
design(object)
} else if (is(design(object), "formula")) {
stats::model.matrix.default(design(object), data=as.data.frame(colData(object)))
}
}
getAndCheckWeights <- function(object, modelMatrix, weightThreshold=1e-2) {
if ("weights" %in% assayNames(object)) {
useWeights <- TRUE
weights <- unname(assays(object)[["weights"]])
stopifnot(all(weights >= 0))
weights <- weights / apply(weights, 1, max)
# some code for testing whether still full rank
# only performed once per analysis, by setting object attribute
if (is.null(attr(object, "weightsOK"))) {
m <- ncol(modelMatrix)
full.rank <- qr(modelMatrix)$rank == m
weights.ok <- logical(nrow(weights))
# most designs are full rank with current version of DESeq2
if (full.rank) {
for (i in seq_len(nrow(weights))) {
# note: downweighting of samples very low will still be full rank
# so this test is kind of minimally in play -- good for checking
# the user input however, e.g. all zero weights for a gene
test1 <- qr(weights[i,] * modelMatrix)$rank == m
# we test that it will be possible to calculate the CR term
# following subsetting based on weightThreshold
mm.sub <- modelMatrix[weights[i,] > weightThreshold,,drop=FALSE]
mm.sub <- mm.sub[,colSums(abs(mm.sub)) > 0,drop=FALSE]
test2 <- qr(mm.sub)$rank == ncol(mm.sub)
weights.ok[i] <- test1 & test2
}
} else {
# model matrix is not full rank (backwards compatibility for betaPrior=TRUE)
# just check zero columns
weights.ok <- rep(TRUE, nrow(weights))
for (j in seq_len(ncol(modelMatrix))) {
num.zero <- colSums(t(weights) * modelMatrix[,j] == 0)
weights.ok <- weights.ok & (num.zero != nrow(modelMatrix))
}
}
# instead of giving an error, switch allZero to TRUE for the problem rows
if (!all(weights.ok)) {
mcols(object)$allZero[!weights.ok] <- TRUE
weightsDF <- DataFrame(weightsFail = !weights.ok)
mcols(weightsDF) <- DataFrame(type="intermediate",
description="weights fail to allow parameter estimation")
mcols(object) <- cbind(mcols(object), weightsDF)
warning(paste("for", sum(!weights.ok),
"row(s), the weights as supplied won't allow parameter estimation, producing a
degenerate design matrix. These rows have been flagged in mcols(dds)$weightsFail
and treated as if the row contained all zeros (mcols(dds)$allZero set to TRUE).
If you are blocking for donors/organisms, consider design = ~0+donor+condition."))
}
}
attr(object, "weightsOK") <- TRUE
} else {
useWeights <- FALSE
weights <- matrix(1, nrow=nrow(object), ncol=ncol(object))
}
list(object=object,weights=weights,useWeights=useWeights)
}
#################################################
## functions from Hmisc for Hmisc.wtd.quantile ##
#################################################
# this and the following two functions are copied from Hmisc
# to avoid extra package dependencies in DESeq2 (same license as Hmisc),
# with the alteration of commenting out `isdate` test
# https://cran.r-project.org/package=Hmisc
Hmisc.wtd.quantile <- function(x, weights=NULL, probs=c(0, .25, .5, .75, 1),
type=c('quantile','(i-1)/(n-1)','i/(n+1)','i/n'),
normwt=FALSE, na.rm=TRUE)
{
if(! length(weights))
return(quantile(x, probs=probs, na.rm=na.rm))
type <- match.arg(type)
if(any(probs < 0 | probs > 1))
stop("Probabilities must be between 0 and 1 inclusive")
nams <- paste(format(round(probs * 100, if(length(probs) > 1)
2 - log10(diff(range(probs))) else 2)),
"%", sep = "")
i <- is.na(weights) | weights == 0
if(any(i)) {
x <- x[! i]
weights <- weights[! i]
}
if(type == 'quantile') {
w <- Hmisc.wtd.table(x, weights, na.rm=na.rm, normwt=normwt, type='list')
x <- w$x
wts <- w$sum.of.weights
n <- sum(wts)
order <- 1 + (n - 1) * probs
low <- pmax(floor(order), 1)
high <- pmin(low + 1, n)
order <- order %% 1
## Find low and high order statistics
## These are minimum values of x such that the cum. freqs >= c(low,high)
allq <- approx(cumsum(wts), x, xout=c(low,high),
method='constant', f=1, rule=2)$y
k <- length(probs)
quantiles <- (1 - order)*allq[1:k] + order*allq[-(1:k)]
names(quantiles) <- nams
return(quantiles)
}
w <- Hmisc.wtd.Ecdf(x, weights, na.rm=na.rm, type=type, normwt=normwt)
structure(approx(w$ecdf, w$x, xout=probs, rule=2)$y,
names=nams)
}
Hmisc.wtd.Ecdf <- function(x, weights=NULL,
type=c('i/n','(i-1)/(n-1)','i/(n+1)'),
normwt=FALSE, na.rm=TRUE)
{
type <- match.arg(type)
switch(type,
'(i-1)/(n-1)'={a <- b <- -1},
'i/(n+1)' ={a <- 0; b <- 1},
'i/n' ={a <- b <- 0})
if(! length(weights)) {
##.Options$digits <- 7 ## to get good resolution for names(table(x))
oldopt <- options('digits')
options(digits=7)
on.exit(options(oldopt))
cumu <- table(x) ## R does not give names for cumsum
#isdate <- testDateTime(x) ## 31aug02
ax <- attributes(x)
ax$names <- NULL
x <- as.numeric(names(cumu))
#if(isdate) attributes(x) <- c(attributes(x),ax)
cumu <- cumsum(cumu)
cdf <- (cumu + a)/(cumu[length(cumu)] + b)
if(cdf[1]>0) {
x <- c(x[1], x);
cdf <- c(0,cdf)
}
return(list(x = x, ecdf=cdf))
}
w <- Hmisc.wtd.table(x, weights, normwt=normwt, na.rm=na.rm)
cumu <- cumsum(w$sum.of.weights)
cdf <- (cumu + a)/(cumu[length(cumu)] + b)
list(x = c(if(cdf[1]>0) w$x[1], w$x), ecdf=c(if(cdf[1]>0)0, cdf))
}
Hmisc.wtd.table <- function(x, weights=NULL, type=c('list','table'),
normwt=FALSE, na.rm=TRUE)
{
type <- match.arg(type)
if(! length(weights))
weights <- rep(1, length(x))
#isdate <- testDateTime(x) ## 31aug02 + next 2
ax <- attributes(x)
ax$names <- NULL
if(is.character(x)) x <- as.factor(x)
lev <- levels(x)
x <- unclass(x)
if(na.rm) {
s <- ! is.na(x + weights)
x <- x[s, drop=FALSE] ## drop is for factor class
weights <- weights[s]
}
n <- length(x)
if(normwt)
weights <- weights * length(x) / sum(weights)
i <- order(x) # R does not preserve levels here
x <- x[i]; weights <- weights[i]
if(anyDuplicated(x)) { ## diff(x) == 0 faster but doesn't handle Inf
weights <- tapply(weights, x, sum)
if(length(lev)) {
levused <- lev[sort(unique(x))]
if((length(weights) > length(levused)) &&
any(is.na(weights)))
weights <- weights[! is.na(weights)]
if(length(weights) != length(levused))
stop('program logic error')
names(weights) <- levused
}
if(! length(names(weights)))
stop('program logic error')
if(type=='table')
return(weights)
# modified from Hmisc::all.is.numeric
x <- as.numeric(names(weights))
#if(isdate)
# attributes(x) <- c(attributes(x),ax)
names(weights) <- NULL
return(list(x=x, sum.of.weights=weights))
}
xx <- x
#if(isdate)
# attributes(xx) <- c(attributes(xx),ax)
if(type=='list')
list(x=if(length(lev))lev[x]
else xx,
sum.of.weights=weights)
else {
names(weights) <- if(length(lev)) lev[x]
else xx
weights
}
}
##############################
## end functions from Hmisc ##
##############################
|