1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
#' Shrink log2 fold changes
#'
#' Adds shrunken log2 fold changes (LFC) and SE to a
#' results table from \code{DESeq} run without LFC shrinkage.
#' For consistency with \code{results}, the column name \code{lfcSE}
#' is used here although what is returned is a posterior SD.
#' Three shrinkage estimators for LFC are available via \code{type}
#' (see the vignette for more details on the estimators).
#' The apeglm publication demonstrates that 'apeglm' and 'ashr' outperform
#' the original 'normal' shrinkage estimator.
#'
#' See vignette for a comparison of shrinkage estimators on an example dataset.
#' For all shrinkage methods, details on the prior is included in
#' \code{priorInfo(res)}, including the \code{fitted_g} mixture for ashr.
#'
#' \strong{For type="apeglm":}
#' Specifying \code{apeglm} passes along DESeq2 MLE log2
#' fold changes and standard errors to the \code{apeglm} function
#' in the apeglm package, and re-estimates posterior LFCs for
#' the coefficient specified by \code{coef}.
#'
#' \strong{For type="ashr":}
#' Specifying \code{ashr} passes along DESeq2 MLE log2
#' fold changes and standard errors to the \code{ash} function
#' in the ashr package,
#' with arguments \code{mixcompdist="normal"} and \code{method="shrink"}.
#'
#' \strong{For type="normal":}
#' For design as a formula, shrinkage cannot be applied
#' to coefficients in a model with interaction terms.
#' For user-supplied model matrices, shrinkage is only
#' supported via \code{coef}. \code{coef} will make use
#' of standard model matrices, while \code{contrast}
#' will make use of expanded model matrices, and for the
#' latter, a results object should be provided to
#' \code{res}. With numeric- or list-style contrasts,
#' it is possible to use \code{lfcShrink}, but likely easier to use
#' \code{DESeq} with \code{betaPrior=TRUE} followed by \code{results},
#' because the numeric or list should reference the coefficients
#' from the expanded model matrix. These coefficients will be printed
#' to console if 'contrast' is used.
#'
#' @param dds a DESeqDataSet object, after running \code{\link{DESeq}}
#' @param coef the name or number of the coefficient (LFC) to shrink,
#' consult \code{resultsNames(dds)} after running \code{DESeq(dds)}.
#' note: only \code{coef} or \code{contrast} can be specified, not both.
#' \code{apeglm} requires use of \code{coef}.
#' For \code{normal}, one of \code{coef} or \code{contrast} must be provided.
#' @param contrast see argument description in \code{\link{results}}.
#' only \code{coef} or \code{contrast} can be specified, not both.
#' @param res a DESeqResults object. Results table produced by the
#' default pipeline, i.e. \code{DESeq} followed by \code{results}.
#' If not provided, it will be generated internally using \code{coef} or \code{contrast}.
#' For \code{ashr}, if \code{res} is provided, then \code{coef} and \code{contrast} are ignored.
#' @param type
#' \code{"apeglm"} is the adaptive Student's t prior shrinkage estimator from the 'apeglm' package;
#' \code{"ashr"} is the adaptive shrinkage estimator from the 'ashr' package,
#' using a fitted mixture of normals prior
#' - see the Stephens (2016) reference below for citation;
#' \code{"normal"} is the 2014 DESeq2 shrinkage estimator using a Normal prior;
#' @param lfcThreshold a non-negative value which specifies a log2 fold change
#' threshold (as in \code{\link{results}}). This can be used in conjunction with
#' \code{normal} and \code{apeglm}, where it will produce new p-values or
#' s-values testing whether the LFC is greater in absolute value than the threshold.
#' The s-values returned in combination with \code{apeglm} provide the probability
#' of FSOS events, "false sign or small", among the tests with equal or smaller s-value
#' than a given gene's s-value, where "small" is specified by \code{lfcThreshold}.
#' @param svalue logical, should p-values and adjusted p-values be replaced
#' with s-values when using \code{apeglm} or \code{ashr}. s-values provide the probability
#' of false signs among the tests with equal or smaller s-value than a given given's s-value.
#' See Stephens (2016) reference on s-values.
#' @param returnList logical, should \code{lfcShrink} return a list, where
#' the first element is the results table, and the second element is the
#' output of \code{apeglm} or \code{ashr}
#' @param format same as defined in \code{\link{results}},
#' either \code{"DataFrame"}, \code{"GRanges"}, or \code{"GRangesList"}
#' @param apeAdapt logical, should \code{apeglm} use the MLE estimates of
#' LFC to adapt the prior, or use default or specified \code{prior.control}
#' @param apeMethod what \code{method} to run \code{apeglm}, which can
#' differ in terms of speed
#' @param parallel if FALSE, no parallelization. if TRUE, parallel
#' execution using \code{BiocParallel}, see same argument of \code{\link{DESeq}}
#' parallelization only used with \code{normal} or \code{apeglm}
#' @param BPPARAM see same argument of \code{\link{DESeq}}
#' @param quiet whether to print messages
#' @param ... arguments passed to \code{apeglm} and \code{ashr}
#'
#' @references
#'
#' Publications for the following shrinkage estimators:
#'
#' \code{type="apeglm"}:
#'
#' Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for
#' sequence count data: removing the noise and preserving large differences.
#' Bioinformatics. \url{https://doi.org/10.1093/bioinformatics/bty895}
#'
#' \code{type="ashr"}:
#'
#' Stephens, M. (2016) False discovery rates: a new deal.
#' Biostatistics, 18:2. \url{https://doi.org/10.1093/biostatistics/kxw041}
#'
#' \code{type="normal"}:
#'
#' Love, M.I., Huber, W., Anders, S. (2014) Moderated estimation of fold change and
#' dispersion for RNA-seq data with DESeq2. Genome Biology, 15:550.
#' \url{https://doi.org/10.1186/s13059-014-0550-8}
#'
#' Related work, the \code{bayesglm} function in the \code{arm} package:
#'
#' Gelman, A., Jakulin, A., Pittau, M.G. and Su, Y.-S. (2009).
#' A Weakly Informative Default Prior Distribution For Logistic And Other Regression Models.
#' The Annals of Applied Statistics 2:4.
#' \url{http://www.stat.columbia.edu/~gelman/research/published/ priors11.pdf}
#'
#' @return a DESeqResults object with the \code{log2FoldChange} and \code{lfcSE}
#' columns replaced with shrunken LFC and SE.
#' For consistency with \code{results} (and similar to the output of \code{bayesglm})
#' the column name \code{lfcSE} is used here, although what is returned is a posterior SD.
#' For \code{normal} and for \code{apeglm} the estimate is the posterior mode,
#' for \code{ashr} it is the posterior mean.
#' \code{priorInfo(res)} contains information about the shrinkage procedure,
#' relevant to the various methods specified by \code{type}.
#'
#' @export
#'
#' @examples
#'
#' set.seed(1)
#' dds <- makeExampleDESeqDataSet(n=500,betaSD=1)
#' dds <- DESeq(dds)
#' res <- results(dds)
#'
#' # these are the coefficients from the model
#' # we can specify them using 'coef' by name or number below
#' resultsNames(dds)
#'
#' res.ape <- lfcShrink(dds=dds, coef=2, type="apeglm")
#' res.ash <- lfcShrink(dds=dds, coef=2, type="ashr")
#' res.norm <- lfcShrink(dds=dds, coef=2, type="normal")
#'
lfcShrink <- function(dds, coef, contrast, res,
type=c("apeglm","ashr","normal"),
lfcThreshold=0,
svalue=FALSE,
returnList=FALSE,
format=c("DataFrame","GRanges","GRangesList"),
apeAdapt=TRUE, apeMethod="nbinomCR",
parallel=FALSE, BPPARAM=bpparam(),
quiet=FALSE, ...) {
stopifnot(is(dds, "DESeqDataSet"))
if (!missing(res)) {
if (!is(res, "DESeqResults")) stop("res should be a DESeqResults object, for GRanges output use 'format'")
}
type <- match.arg(type, choices=c("apeglm","ashr","normal"))
format <- match.arg(format, choices=c("DataFrame", "GRanges","GRangesList"))
if (length(resultsNames(dds)) == 0) {
if (type != "apeglm" | (type == "apeglm" & apeAdapt)) {
stop("first run DESeq() before running lfcShrink()")
}
}
betaPrior <- attr(dds,"betaPrior")
if (!is.null(betaPrior) && betaPrior) {
stop("lfcShrink() should be used downstream of DESeq() with betaPrior=FALSE (the default)")
}
stopifnot(length(lfcThreshold) == 1 && lfcThreshold >= 0)
resultsNamesDDS <- resultsNames(dds)
# we can run apeglm without running nbinomWaldTest()
# but we need to go get the column names of the model matrix first...
if (type == "apeglm" & !apeAdapt & length(resultsNames(dds)) == 0) {
resultsNamesDDS <- colnames(model.matrix(design(dds), data=colData(dds)))
}
# checks on the coef numeric or character wrt resultsNames(dds)
if (!missing(coef)) {
if (is.numeric(coef)) {
stopifnot(coef <= length(resultsNamesDDS))
coefAlpha <- resultsNamesDDS[coef]
coefNum <- coef
} else if (is.character(coef)) {
stopifnot(coef %in% resultsNamesDDS)
coefNum <- which(resultsNamesDDS == coef)
coefAlpha <- coef
}
}
if (missing(res)) {
if (!missing(coef)) {
res <- results(dds, name=coefAlpha)
} else if (!missing(contrast)) {
if (type=="normal" & is.numeric(contrast)) {
stop("for type='normal' and numeric contrast, user must provide 'res' object")
}
res <- results(dds, contrast=contrast)
} else {
stop("one of coef or contrast required if 'res' is missing")
}
}
if (type %in% c("normal","apeglm")) {
if (is.null(dispersions(dds))) {
stop("type='normal' and 'apeglm' require dispersion estimates, first call estimateDispersions()")
}
stopifnot(all(rownames(dds) == rownames(res)))
if (parallel) {
nworkers <- getNworkers(BPPARAM)
parallelIdx <- factor(sort(rep(seq_len(nworkers),length.out=nrow(dds))))
}
}
if (type == "normal") {
if (missing(coef) & missing(contrast)) {
stop("type='normal' requires either 'coef' or 'contrast' be specified.")
}
############
## normal ##
############
if (!quiet) message("using 'normal' for LFC shrinkage, the Normal prior from Love et al (2014).
Note that type='apeglm' and type='ashr' have shown to have less bias than type='normal'.
See ?lfcShrink for more details on shrinkage type, and the DESeq2 vignette.
Reference: https://doi.org/10.1093/bioinformatics/bty895")
if (is(design(dds), "formula")) {
if (attr(dds, "modelMatrixType") == "user-supplied") {
# if 'full' was used, the model matrix should be stored here
# TODO... better one day to harmonize these two locations:
# 1) provided by 'full' and stashed in attr(dds, "modelMatrix")
# 2) design(dds)
if (!missing(contrast)) {
stop("user-supplied design matrix supports shrinkage only with 'coef'")
}
modelMatrix <- attr(dds, "modelMatrix")
} else {
termsOrder <- attr(terms.formula(design(dds)),"order")
interactionPresent <- any(termsOrder > 1)
if (interactionPresent) {
stop("LFC shrinkage type='normal' not implemented for designs with interactions")
}
modelMatrix <- NULL
}
} else if (is(design(dds), "matrix")) {
if (!missing(contrast)) {
stop("user-supplied design matrix supports shrinkage only with 'coef'")
}
modelMatrix <- design(dds)
}
stopifnot(missing(coef) | missing(contrast))
# find and rename the MLE columns for estimateBetaPriorVar
betaCols <- grep("log2 fold change \\(MLE\\)", mcols(mcols(dds))$description)
stopifnot(length(betaCols) > 0)
if (!any(grepl("MLE_",names(mcols(dds))[betaCols]))) {
names(mcols(dds))[betaCols] <- paste0("MLE_", names(mcols(dds))[betaCols])
}
if (missing(contrast)) {
modelMatrixType <- "standard"
} else {
# contrast, and so using expanded model matrix: run some checks
modelMatrixType <- "expanded"
expMM <- makeExpandedModelMatrix(dds)
resNames <- colnames(expMM)
# quick and dirty checks so as to avoid running DESeq() before hitting error
if (is(contrast, "character")) {
stopifnot(length(contrast) == 3)
stopifnot(contrast[1] %in% names(colData(dds)))
stopifnot(is(colData(dds)[[contrast[1]]], "factor"))
stopifnot(all(contrast[2:3] %in% levels(colData(dds)[[contrast[1]]])))
} else {
message("resultsNames from the expanded model matrix to be referenced by 'contrast':")
message(paste0("'",paste(resNames, collapse="', '"),"'"))
}
contrast <- checkContrast(contrast, resNames)
}
attr(dds,"modelMatrixType") <- modelMatrixType
betaPriorVar <- estimateBetaPriorVar(dds, modelMatrix=modelMatrix)
stopifnot(length(betaPriorVar) > 0)
# parallel fork
if (!parallel) {
dds.shr <- nbinomWaldTest(dds,
betaPrior=TRUE,
betaPriorVar=betaPriorVar,
modelMatrix=modelMatrix,
modelMatrixType=modelMatrixType,
quiet=TRUE)
} else {
dds.shr <- do.call(rbind, bplapply(levels(parallelIdx), function(l) {
nbinomWaldTest(dds[parallelIdx == l,,drop=FALSE],
betaPrior=TRUE,
betaPriorVar=betaPriorVar,
modelMatrix=modelMatrix,
modelMatrixType=modelMatrixType,
quiet=TRUE)
}, BPPARAM=BPPARAM))
}
if (missing(contrast)) {
# parallel not necessary here
res.shr <- results(dds.shr, name=coefAlpha, lfcThreshold=lfcThreshold)
} else {
# parallel may be useful here as novel contrasts can take a while with big designs
res.shr <- results(dds.shr, contrast=contrast, lfcThreshold=lfcThreshold,
parallel=parallel, BPPARAM=BPPARAM)
}
if (lfcThreshold > 0) {
change.cols <- c("log2FoldChange","lfcSE","stat","pvalue","padj")
} else {
change.cols <- c("log2FoldChange","lfcSE")
}
for (column in change.cols) {
res[[column]] <- res.shr[[column]]
}
mcols(res,use.names=TRUE)[change.cols,"description"] <- mcols(res.shr,use.names=TRUE)[change.cols,"description"]
deseq2.version <- packageVersion("DESeq2")
# stash lfcThreshold
metadata(res)[["lfcThreshold"]] <- lfcThreshold
priorInfo(res) <- list(type="normal",
package="DESeq2",
version=deseq2.version,
betaPriorVar=betaPriorVar)
res <- resultsFormatSwitch(object=dds, res=res, format=format)
return(res)
} else if (type == "apeglm") {
############
## apeglm ##
############
if (!requireNamespace("apeglm", quietly=TRUE)) {
stop("type='apeglm' requires installing the Bioconductor package 'apeglm'")
}
if (!missing(contrast)) {
stop("type='apeglm' shrinkage only for use with 'coef'")
}
stopifnot(!missing(coef))
# if we are using adaptive prior, get the LFC columns
if (apeAdapt) {
incomingCoef <- gsub(" ","_",sub("log2 fold change \\(MLE\\): ","",mcols(res)[2,2]))
if (coefAlpha != incomingCoef) {
stop("'coef' should specify same coefficient as in results 'res'")
}
}
if (!quiet) message("using 'apeglm' for LFC shrinkage. If used in published research, please cite:
Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for
sequence count data: removing the noise and preserving large differences.
Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895")
Y <- counts(dds)
modelMatrixType <- attr(dds, "modelMatrixType")
if (!is.null(modelMatrixType) && modelMatrixType == "user-supplied") {
design <- attr(dds, "modelMatrix")
} else {
design <- model.matrix(design(dds), data=colData(dds))
}
disps <- dispersions(dds)
if (is.null(normalizationFactors(dds))) {
offset <- matrix(log(sizeFactors(dds)),
nrow=nrow(dds), ncol=ncol(dds), byrow=TRUE)
} else {
offset <- log(normalizationFactors(dds))
}
if ("weights" %in% assayNames(dds)) {
weights <- assays(dds)[["weights"]]
} else {
weights <- matrix(1, nrow=nrow(dds), ncol=ncol(dds))
}
if (apeAdapt) {
mle <- log(2) * cbind(res$log2FoldChange, res$lfcSE)
} else {
mle <- NULL
}
if (apeMethod == "general") {
log.lik <- apeglm::logLikNB
} else {
log.lik <- NULL
}
if (lfcThreshold > 0) {
message(paste0("computing FSOS 'false sign or small' s-values (T=",round(lfcThreshold,3),")"))
svalue <- TRUE
apeT <- log(2) * lfcThreshold
} else {
apeT <- NULL
}
# parallel fork
if (!parallel) {
fit <- apeglm::apeglm(Y=Y, x=design, log.lik=log.lik, param=disps,
coef=coefNum, mle=mle, threshold=apeT,
weights=weights, offset=offset,
method=apeMethod, ...)
} else {
fitList <- bplapply(levels(parallelIdx), function(l) {
idx <- parallelIdx == l
apeglm::apeglm(Y=Y[idx,,drop=FALSE], x=design, log.lik=log.lik, param=disps[idx],
coef=coefNum, mle=mle, threshold=apeT,
weights=weights[idx,,drop=FALSE], offset=offset[idx,,drop=FALSE],
method=apeMethod, ...)
})
# collate the objects from the split
fit <- list()
ape.cols <- c("map","sd","fsr","svalue","interval","diag")
if (lfcThreshold > 0) {
ape.cols <- c(ape.cols, "thresh")
}
for (param in ape.cols) {
fit[[param]] <- do.call(rbind, lapply(fitList, `[[`, param))
}
fit$prior.control <- fitList[[1]]$prior.control
fit$svalue <- apeglm::svalue(fit$fsr[,1])
}
stopifnot(nrow(fit$map) == nrow(dds))
conv <- fit$diag[,"conv"]
if (!all(conv[!is.na(conv)] == 0)) {
message("Some rows did not converge in finding the MAP")
}
res$log2FoldChange <- log2(exp(1)) * fit$map[,coefNum]
res$lfcSE <- log2(exp(1)) * fit$sd[,coefNum]
mcols(res)$description[2] <- sub("MLE","MAP",mcols(res)$description[2])
mcols(res)$description[3] <- sub("standard error","posterior SD",mcols(res)$description[3])
if (svalue) {
coefAlphaSpaces <- gsub("_"," ",coefAlpha)
res <- res[,1:3]
if (lfcThreshold > 0) {
res$svalue <- as.numeric(apeglm::svalue(fit$thresh))
description <- paste0("FSOS s-value (T=",round(lfcThreshold,3),"): ",coefAlphaSpaces)
} else {
res$svalue <- as.numeric(fit$svalue)
description <- paste0("s-value: ",coefAlphaSpaces)
}
mcols(res)[4,] <- DataFrame(type="results", description=description)
} else {
res <- res[,c(1:3,5:6)]
}
# stash lfcThreshold
metadata(res)[["lfcThreshold"]] <- lfcThreshold
priorInfo(res) <- list(type="apeglm",
package="apeglm",
version=packageVersion("apeglm"),
prior.control=fit$prior.control)
res <- resultsFormatSwitch(object=dds, res=res, format=format)
if (returnList) {
return(list(res=res, fit=fit))
} else {
return(res)
}
} else if (type == "ashr") {
##########
## ashr ##
##########
if (!requireNamespace("ashr", quietly=TRUE)) {
stop("type='ashr' requires installing the CRAN package 'ashr'")
}
if (!quiet) message("using 'ashr' for LFC shrinkage. If used in published research, please cite:
Stephens, M. (2016) False discovery rates: a new deal. Biostatistics, 18:2.
https://doi.org/10.1093/biostatistics/kxw041")
if (lfcThreshold > 0) message("lfcThreshold is not used by type='ashr'")
betahat <- res$log2FoldChange
sebetahat <- res$lfcSE
fit <- ashr::ash(betahat, sebetahat,
mixcompdist="normal", method="shrink", ...)
res$log2FoldChange <- fit$result$PosteriorMean
res$lfcSE <- fit$result$PosteriorSD
mcols(res)$description[2] <- sub("MLE","MMSE",mcols(res)$description[2])
mcols(res)$description[3] <- sub("standard error","posterior SD",mcols(res)$description[3])
if (svalue) {
coefAlphaSpaces <- sub(".*p-value: ","",mcols(res)$description[5])
res <- res[,1:3]
res$svalue <- fit$result$svalue
mcols(res)[4,] <- DataFrame(type="results",
description=paste("s-value:",coefAlphaSpaces))
} else {
res <- res[,c(1:3,5:6)]
}
# stash lfcThreshold
metadata(res)[["lfcThreshold"]] <- lfcThreshold
priorInfo(res) <- list(type="ashr",
package="ashr",
version=packageVersion("ashr"),
fitted_g=fit$fitted_g)
res <- resultsFormatSwitch(object=dds, res=res, format=format)
if (returnList) {
return(list(res=res, fit=fit))
} else{
return(res)
}
}
}
|