1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
|
counts.DESeqDataSet <- function(object, normalized=FALSE, replaced=FALSE) {
# Temporary hack for backward compatibility with "old" DESeqDataSet
# objects. Remove once all serialized DESeqDataSet objects around have
# been updated.
if (!.hasSlot(object, "rowRanges"))
object <- updateObject(object)
if (replaced) {
if ("replaceCounts" %in% assayNames(object)) {
cnts <- assays(object)[["replaceCounts"]]
} else {
warning("there are no assays named 'replaceCounts', using original.
calling DESeq() will replace outliers if they are detected and store this assay.")
cnts <- assays(object)[["counts"]]
}
} else {
cnts <- assays(object)[["counts"]]
}
if (!normalized) {
return(cnts)
} else {
if (!is.null(normalizationFactors(object))) {
return( cnts / normalizationFactors(object) )
} else if (is.null(sizeFactors(object)) || any(is.na(sizeFactors(object)))) {
stop("first calculate size factors, add normalizationFactors, or set normalized=FALSE")
} else {
return( t( t( cnts ) / sizeFactors(object) ) )
}
}
}
#' Accessors for the 'counts' slot of a DESeqDataSet object.
#'
#' The counts slot holds the count data as a matrix of non-negative integer
#' count values, one row for each observational unit (gene or the like), and one
#' column for each sample.
#'
#' @docType methods
#' @name counts
#' @rdname counts
#' @aliases counts counts,DESeqDataSet-method counts<-,DESeqDataSet,matrix-method
#'
#' @param object a \code{DESeqDataSet} object.
#' @param normalized logical indicating whether or not to divide the counts by
#' the size factors or normalization factors before returning
#' (normalization factors always preempt size factors)
#' @param replaced after a \code{DESeq} call, this argument will return the counts
#' with outliers replaced instead of the original counts, and optionally \code{normalized}.
#' The replaced counts are stored by \code{DESeq} in \code{assays(object)[['replaceCounts']]}.
#' @param value an integer matrix
#' @author Simon Anders
#' @seealso \code{\link{sizeFactors}}, \code{\link{normalizationFactors}}
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet(m=4)
#' head(counts(dds))
#'
#' dds <- estimateSizeFactors(dds) # run this or DESeq() first
#' head(counts(dds, normalized=TRUE))
#'
#' @export
setMethod("counts", signature(object="DESeqDataSet"), counts.DESeqDataSet)
#' @name counts
#' @rdname counts
#' @exportMethod "counts<-"
setReplaceMethod("counts", signature(object="DESeqDataSet", value="matrix"),
function( object, value ) {
assays(object)[["counts"]] <- value
validObject(object)
object
})
design.DESeqDataSet <- function(object) object@design
#' Accessors for the 'design' slot of a DESeqDataSet object.
#'
#' The design holds the R \code{formula} which expresses how the
#' counts depend on the variables in \code{colData}.
#' See \code{\link{DESeqDataSet}} for details.
#'
#' @docType methods
#' @name design
#' @rdname design
#' @aliases design design,DESeqDataSet-method design<-,DESeqDataSet,formula-method design<-,DESeqDataSet,matrix-method
#' @param object a \code{DESeqDataSet} object
#' @param value a \code{formula} used for estimating dispersion
#' and fitting Negative Binomial GLMs
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet(m=4)
#' design(dds) <- formula(~ 1)
#'
#' @export
setMethod("design", signature(object="DESeqDataSet"), design.DESeqDataSet)
design.replace <- function( object, value ) {
# Temporary hack for backward compatibility with "old"
# DESeqDataSet objects. Remove once all serialized
# DESeqDataSet objects around have been updated.
if (!.hasSlot(object, "rowRanges"))
object <- updateObject(object)
object@design <- value
validObject(object)
object
}
#' @name design
#' @rdname design
#' @exportMethod "design<-"
setReplaceMethod("design", signature(object="DESeqDataSet", value="formula"), design.replace)
#' @name design
#' @rdname design
#' @exportMethod "design<-"
setReplaceMethod("design", signature(object="DESeqDataSet", value="matrix"), design.replace)
dispersionFunction.DESeqDataSet <- function(object) object@dispersionFunction
#' Accessors for the 'dispersionFunction' slot of a DESeqDataSet object.
#'
#' The dispersion function is calculated by \code{\link{estimateDispersions}} and
#' used by \code{\link{varianceStabilizingTransformation}}. Parametric dispersion
#' fits store the coefficients of the fit as attributes in this slot.
#'
#' Setting this will also overwrite \code{mcols(object)$dispFit} and the estimate
#' the variance of dispersion residuals, see \code{estimateVar} below.
#'
#' @docType methods
#' @name dispersionFunction
#' @rdname dispersionFunction
#' @aliases dispersionFunction dispersionFunction,DESeqDataSet-method dispersionFunction<-,DESeqDataSet,function-method
#' @param object a \code{DESeqDataSet} object.
#' @param value a \code{function}
#' @param estimateVar whether to estimate the variance of dispersion residuals.
#' setting to FALSE is needed, e.g. within \code{estimateDispersionsMAP} when
#' called on a subset of the full dataset in parallel execution.
#' @param ... additional arguments
#'
#' @seealso \code{\link{estimateDispersions}}
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet(m=4)
#' dds <- estimateSizeFactors(dds)
#' dds <- estimateDispersions(dds)
#' dispersionFunction(dds)
#'
#' @export
setMethod("dispersionFunction", signature(object="DESeqDataSet"),
dispersionFunction.DESeqDataSet)
dispFun.replace <- function(object, value, estimateVar=TRUE) {
# Temporary hack for backward compatibility with "old"
# DESeqDataSet objects. Remove once all serialized
# DESeqDataSet objects around have been updated.
if (!.hasSlot(object, "rowRanges"))
object <- updateObject(object)
# the following will add 'dispFit' to mcols(object)
# first, check to see that we have 'baseMean' and 'allZero' columns
if (is.null(mcols(object)$baseMean) | is.null(mcols(object)$allZero)) {
object <- getBaseMeansAndVariances(object)
}
# warning about existing 'dispFit' data will be removed
if (!is.null(mcols(object)$dispFit)) {
mcols(object) <- mcols(object)[,!names(mcols(object)) == "dispFit",drop=FALSE]
}
# now call the dispersionFunction on 'baseMean' to make 'dispFit'
nonzeroIdx <- !mcols(object)$allZero
dispFit <- value(mcols(object)$baseMean[nonzeroIdx])
# if the function returns a single value, build the full vector
if (length(dispFit) == 1) {
dispFit <- rep(dispFit, sum(nonzeroIdx))
}
dispDataFrame <- buildDataFrameWithNARows(list(dispFit=dispFit),
mcols(object)$allZero)
mcols(dispDataFrame) <- DataFrame(type="intermediate",
description="fitted values of dispersion")
mcols(object) <- cbind(mcols(object), dispDataFrame)
# estimate variance of log dispersion around the fit
if (estimateVar) {
# need to estimate variance of log dispersion residuals
minDisp <- 1e-8
dispGeneEst <- mcols(object)$dispGeneEst[nonzeroIdx]
aboveMinDisp <- dispGeneEst >= minDisp*100
if (sum(aboveMinDisp,na.rm=TRUE) > 0) {
dispResiduals <- log(dispGeneEst) - log(dispFit)
varLogDispEsts <- mad(dispResiduals[aboveMinDisp],na.rm=TRUE)^2
attr( value, "varLogDispEsts" ) <- varLogDispEsts
} else {
message("variance of dispersion residuals not estimated (necessary only for differential expression calling)")
}
}
# store the dispersion function
object@dispersionFunction <- value
validObject(object)
object
}
#' @name dispersionFunction
#' @rdname dispersionFunction
#' @exportMethod "dispersionFunction<-"
setReplaceMethod("dispersionFunction", signature(object="DESeqDataSet", value="function"), dispFun.replace)
dispersions.DESeqDataSet <- function(object) mcols(object)$dispersion
#' Accessor functions for the dispersion estimates in a DESeqDataSet
#' object.
#'
#' The dispersions for each row of the DESeqDataSet. Generally,
#' these are set by \code{\link{estimateDispersions}}.
#'
#' @docType methods
#' @name dispersions
#' @rdname dispersions
#' @aliases dispersions dispersions,DESeqDataSet-method dispersions<-,DESeqDataSet,numeric-method
#' @param object a \code{DESeqDataSet} object.
#' @param value the dispersions to use for the Negative Binomial modeling
#' @param ... additional arguments
#'
#' @author Simon Anders
#' @seealso \code{\link{estimateDispersions}}
#'
#' @export
setMethod("dispersions", signature(object="DESeqDataSet"),
dispersions.DESeqDataSet)
#' @name dispersions
#' @rdname dispersions
#' @exportMethod "dispersions<-"
setReplaceMethod("dispersions", signature(object="DESeqDataSet", value="numeric"),
function(object, value) {
firstRowDataColumn <- ncol(mcols(object)) == 0
mcols(object)$dispersion <- value
if (firstRowDataColumn) {
mcols(mcols(object)) <- DataFrame(type="input",
description="final estimate of dispersion")
}
validObject( object )
object
})
sizeFactors.DESeqDataSet <- function(object) {
if (!"sizeFactor" %in% names(colData(object))) return(NULL)
sf <- object$sizeFactor
names( sf ) <- colnames( object )
sf
}
#' Accessor functions for the 'sizeFactors' information in a DESeqDataSet
#' object.
#'
#' The sizeFactors vector assigns to each column of the count matrix a value, the
#' size factor, such that count values in the columns can be brought to a common
#' scale by dividing by the corresponding size factor (as performed by
#' \code{counts(dds, normalized=TRUE)}).
#' See \code{\link{DESeq}} for a description of the use of size factors.
#' If gene-specific normalization
#' is desired for each sample, use \code{\link{normalizationFactors}}.
#'
#' @docType methods
#' @name sizeFactors
#' @rdname sizeFactors
#' @aliases sizeFactors sizeFactors,DESeqDataSet-method sizeFactors<-,DESeqDataSet,numeric-method
#' @param object a \code{DESeqDataSet} object.
#' @param value a numeric vector, one size factor for each column in the count
#' data.
#' @author Simon Anders
#' @seealso \code{\link{estimateSizeFactors}}
#'
#' @export
setMethod("sizeFactors", signature(object="DESeqDataSet"),
sizeFactors.DESeqDataSet)
#' @name sizeFactors
#' @rdname sizeFactors
#' @exportMethod "sizeFactors<-"
setReplaceMethod("sizeFactors", signature(object="DESeqDataSet", value="numeric"),
function( object, value ) {
stopifnot(all(!is.na(value)))
stopifnot(all(is.finite(value)))
stopifnot(all(value > 0))
# Temporary hack for backward compatibility with "old"
# DESeqDataSet objects. Remove once all serialized
# DESeqDataSet objects around have been updated.
if (!.hasSlot(object, "rowRanges"))
object <- updateObject(object)
# have to make sure to remove sizeFactor which might be
# coming from a previous CountDataSet
object$sizeFactor <- value
idx <- which(colnames(colData(object)) == "sizeFactor")
metaDataFrame <- DataFrame(type="intermediate",
description="a scaling factor for columns")
mcols(colData(object))[idx,] <- metaDataFrame
validObject( object )
object
})
normalizationFactors.DESeqDataSet <- function(object) {
# Temporary hack for backward compatibility with "old" DESeqDataSet
# objects. Remove once all serialized DESeqDataSet objects around have
# been updated.
if (!.hasSlot(object, "rowRanges"))
object <- updateObject(object)
if (!"normalizationFactors" %in% assayNames(object)) return(NULL)
assays(object)[["normalizationFactors"]]
}
#' Accessor functions for the normalization factors in a DESeqDataSet
#' object.
#'
#' Gene-specific normalization factors for each sample can be provided as a matrix,
#' which will preempt \code{\link{sizeFactors}}. In some experiments, counts for each
#' sample have varying dependence on covariates, e.g. on GC-content for sequencing
#' data run on different days, and in this case it makes sense to provide
#' gene-specific factors for each sample rather than a single size factor.
#'
#' Normalization factors alter the model of \code{\link{DESeq}} in the following way, for
#' counts \eqn{K_{ij}}{K_ij} and normalization factors \eqn{NF_{ij}}{NF_ij} for gene i and sample j:
#'
#' \deqn{ K_{ij} \sim \textrm{NB}( \mu_{ij}, \alpha_i) }{ K_ij ~ NB(mu_ij, alpha_i) }
#' \deqn{ \mu_{ij} = NF_{ij} q_{ij} }{ mu_ij = NF_ij q_ij }
#'
#' @note Normalization factors are on the scale of the counts (similar to \code{\link{sizeFactors}})
#' and unlike offsets, which are typically on the scale of the predictors (in this case, log counts).
#' Normalization factors should include library size normalization. They should have
#' row-wise geometric mean near 1, as is the case with size factors, such that the mean of normalized
#' counts is close to the mean of unnormalized counts. See example code below.
#'
#' @docType methods
#' @name normalizationFactors
#' @rdname normalizationFactors
#' @aliases normalizationFactors normalizationFactors,DESeqDataSet-method normalizationFactors<-,DESeqDataSet,matrix-method
#' @param object a \code{DESeqDataSet} object.
#' @param value the matrix of normalization factors
#' @param ... additional arguments
#' @examples
#'
#' dds <- makeExampleDESeqDataSet(n=100, m=4)
#'
#' normFactors <- matrix(runif(nrow(dds)*ncol(dds),0.5,1.5),
#' ncol=ncol(dds),nrow=nrow(dds),
#' dimnames=list(1:nrow(dds),1:ncol(dds)))
#'
#' # the normalization factors matrix should not have 0's in it
#' # it should have geometric mean near 1 for each row
#' normFactors <- normFactors / exp(rowMeans(log(normFactors)))
#' normalizationFactors(dds) <- normFactors
#'
#' dds <- DESeq(dds)
#'
#' @export
setMethod("normalizationFactors", signature(object="DESeqDataSet"),
normalizationFactors.DESeqDataSet)
#' @name normalizationFactors
#' @rdname normalizationFactors
#' @exportMethod "normalizationFactors<-"
setReplaceMethod("normalizationFactors", signature(object="DESeqDataSet", value="matrix"),
function(object, value) {
stopifnot(all(!is.na(value)))
stopifnot(all(is.finite(value)))
stopifnot(all(value > 0))
# Temporary hack for backward compatibility with "old"
# DESeqDataSet objects. Remove once all serialized
# DESeqDataSet objects around have been updated.
if (!.hasSlot(object, "rowRanges"))
object <- updateObject(object)
# enforce same dimnames
dimnames(value) <- dimnames(object)
assays(object)[["normalizationFactors"]] <- value
validObject( object )
object
})
estimateSizeFactors.DESeqDataSet <- function(object, type=c("ratio","poscounts","iterate"),
locfunc=stats::median,
geoMeans, controlGenes, normMatrix, quiet=FALSE) {
type <- match.arg(type, c("ratio","poscounts","iterate"))
# Temporary hack for backward compatibility with "old" DESeqDataSet
# objects. Remove once all serialized DESeqDataSet objects around have
# been updated.
if (!.hasSlot(object, "rowRanges")) {
object <- updateObject(object)
}
object <- sanitizeColData(object)
if (type == "iterate") {
sizeFactors(object) <- estimateSizeFactorsIterate(object)
} else {
if (type == "poscounts") {
geoMeanNZ <- function(x) {
if (all(x == 0)) { 0 } else { exp( sum(log(x[x > 0])) / length(x) ) }
}
geoMeans <- apply(counts(object), 1, geoMeanNZ)
}
if ("avgTxLength" %in% assayNames(object)) {
nm <- assays(object)[["avgTxLength"]]
nm <- nm / exp(rowMeans(log(nm))) # divide out the geometric mean
normalizationFactors(object) <- estimateNormFactors(counts(object),
normMatrix=nm,
locfunc=locfunc,
geoMeans=geoMeans,
controlGenes=controlGenes)
if (!quiet) message("using 'avgTxLength' from assays(dds), correcting for library size")
} else if (missing(normMatrix)) {
sizeFactors(object) <- estimateSizeFactorsForMatrix(counts(object), locfunc=locfunc,
geoMeans=geoMeans,
controlGenes=controlGenes)
} else {
normalizationFactors(object) <- estimateNormFactors(counts(object),
normMatrix=normMatrix,
locfunc=locfunc,
geoMeans=geoMeans,
controlGenes=controlGenes)
if (!quiet) message("using 'normMatrix', adding normalization factors which correct for library size")
}
}
object
}
#' Estimate the size factors for a \code{\link{DESeqDataSet}}
#'
#' This function estimates the size factors using the
#' "median ratio method" described by Equation 5 in Anders and Huber (2010).
#' The estimated size factors can be accessed using the accessor function \code{\link{sizeFactors}}.
#' Alternative library size estimators can also be supplied
#' using the assignment function \code{\link{sizeFactors<-}}.
#'
#' Typically, the function is called with the idiom:
#'
#' \code{dds <- estimateSizeFactors(dds)}
#'
#' See \code{\link{DESeq}} for a description of the use of size factors in the GLM.
#' One should call this function after \code{\link{DESeqDataSet}}
#' unless size factors are manually specified with \code{\link{sizeFactors}}.
#' Alternatively, gene-specific normalization factors for each sample can be provided using
#' \code{\link{normalizationFactors}} which will always preempt \code{\link{sizeFactors}}
#' in calculations.
#'
#' Internally, the function calls \code{\link{estimateSizeFactorsForMatrix}},
#' which provides more details on the calculation.
#'
#' @docType methods
#' @name estimateSizeFactors
#' @rdname estimateSizeFactors
#' @aliases estimateSizeFactors estimateSizeFactors,DESeqDataSet-method
#'
#' @param object a DESeqDataSet
#' @param type Method for estimation: either "ratio", "poscounts", or "iterate".
#' "ratio" uses the standard median ratio method introduced in DESeq. The size factor is the
#' median ratio of the sample over a "pseudosample": for each gene, the geometric mean
#' of all samples.
#' "poscounts" and "iterate" offer alternative estimators, which can be
#' used even when all genes contain a sample with a zero (a problem for the
#' default method, as the geometric mean becomes zero, and the ratio undefined).
#' The "poscounts" estimator deals with a gene with some zeros, by calculating a
#' modified geometric mean by taking the n-th root of the product of the non-zero counts.
#' This evolved out of use cases with Paul McMurdie's phyloseq package for metagenomic samples.
#' The "iterate" estimator iterates between estimating the dispersion with a design of ~1, and
#' finding a size factor vector by numerically optimizing the likelihood
#' of the ~1 model.
#' @param locfunc a function to compute a location for a sample. By default, the
#' median is used. However, especially for low counts, the
#' \code{\link[genefilter]{shorth}} function from the genefilter package may give better results.
#' @param geoMeans by default this is not provided and the
#' geometric means of the counts are calculated within the function.
#' A vector of geometric means from another count matrix can be provided
#' for a "frozen" size factor calculation. The size factors will be
#' scaled to have a geometric mean of 1 when supplying \code{geoMeans}.
#' @param controlGenes optional, numeric or logical index vector specifying those genes to
#' use for size factor estimation (e.g. housekeeping or spike-in genes)
#' @param normMatrix optional, a matrix of normalization factors which do not yet
#' control for library size. Note that this argument should not be used (and
#' will be ignored) if the \code{dds} object was created using \code{tximport}.
#' In this case, the information in \code{assays(dds)[["avgTxLength"]]}
#' is automatically used to create appropriate normalization factors.
#' Providing \code{normMatrix} will estimate size factors on the
#' count matrix divided by \code{normMatrix} and store the product of the
#' size factors and \code{normMatrix} as \code{\link{normalizationFactors}}.
#' It is recommended to divide out the row-wise geometric mean of
#' \code{normMatrix} so the rows roughly are centered on 1.
#' @param quiet whether to print messages
#'
#' @return The DESeqDataSet passed as parameters, with the size factors filled
#' in.
#' @author Simon Anders
#' @seealso \code{\link{estimateSizeFactorsForMatrix}}
#'
#' @references
#'
#' Reference for the median ratio method:
#'
#' Simon Anders, Wolfgang Huber: Differential expression analysis for sequence count data.
#' Genome Biology 2010, 11:106. \url{http://dx.doi.org/10.1186/gb-2010-11-10-r106}
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet(n=1000, m=4)
#' dds <- estimateSizeFactors(dds)
#' sizeFactors(dds)
#'
#' dds <- estimateSizeFactors(dds, controlGenes=1:200)
#'
#' m <- matrix(runif(1000 * 4, .5, 1.5), ncol=4)
#' dds <- estimateSizeFactors(dds, normMatrix=m)
#' normalizationFactors(dds)[1:3,]
#'
#' geoMeans <- exp(rowMeans(log(counts(dds))))
#' dds <- estimateSizeFactors(dds,geoMeans=geoMeans)
#' sizeFactors(dds)
#'
#' @export
setMethod("estimateSizeFactors", signature(object="DESeqDataSet"),
estimateSizeFactors.DESeqDataSet)
estimateDispersions.DESeqDataSet <- function(object, fitType=c("parametric","local","mean", "glmGamPoi"),
maxit=100, useCR=TRUE,
weightThreshold=1e-2,
quiet=FALSE, modelMatrix=NULL,
minmu=if (fitType=="glmGamPoi") 1e-6 else 0.5) {
# Temporary hack for backward compatibility with "old" DESeqDataSet
# objects. Remove once all serialized DESeqDataSet objects around have
# been updated.
if (!.hasSlot(object, "rowRanges"))
object <- updateObject(object)
if (is.null(sizeFactors(object)) & is.null(normalizationFactors(object))) {
stop("first call estimateSizeFactors or provide a normalizationFactor matrix before estimateDispersions")
}
# size factors could have slipped in to colData from a previous run
if (!is.null(sizeFactors(object))) {
if (!is.numeric(sizeFactors(object))) {
stop("the sizeFactor column in colData is not numeric.
this column could have come in during colData import and should be removed.")
}
if (any(is.na(sizeFactors(object)))) {
stop("the sizeFactor column in colData contains NA.
this column could have come in during colData import and should be removed.")
}
}
if (all(rowSums(counts(object) == counts(object)[,1]) == ncol(object))) {
stop("all genes have equal values for all samples. will not be able to perform differential analysis")
}
if (!is.null(dispersions(object))) {
if (!quiet) message("found already estimated dispersions, replacing these")
mcols(object) <- mcols(object)[,!(mcols(mcols(object))$type %in% c("intermediate","results")),drop=FALSE]
}
stopifnot(length(maxit)==1)
fitType <- match.arg(fitType, choices=c("parametric","local","mean", "glmGamPoi"))
dispersionEstimator <- if (fitType == "glmGamPoi") {
if (!requireNamespace("glmGamPoi", quietly=TRUE)) {
stop("type='glmGamPoi' requires installing the Bioconductor package 'glmGamPoi'")
}
"glmGamPoi"
} else {
"DESeq2"
}
checkForExperimentalReplicates(object, modelMatrix)
if (!quiet) message("gene-wise dispersion estimates")
object <- estimateDispersionsGeneEst(object,
maxit=maxit,
useCR=useCR,
weightThreshold=weightThreshold,
quiet=quiet,
modelMatrix=modelMatrix,
minmu=minmu,
type = dispersionEstimator)
if (!quiet) message("mean-dispersion relationship")
object <- estimateDispersionsFit(object,
fitType= fitType,
quiet=quiet)
if (!quiet) message("final dispersion estimates")
object <- estimateDispersionsMAP(object,
maxit=maxit,
useCR=useCR,
weightThreshold=weightThreshold,
quiet=quiet,
modelMatrix=modelMatrix,
type = dispersionEstimator)
return(object)
}
checkForExperimentalReplicates <- function(object, modelMatrix) {
# Temporary hack for backward compatibility with "old" DESeqDataSet
# objects. Remove once all serialized DESeqDataSet objects around have
# been updated.
if (!.hasSlot(object, "rowRanges"))
object <- updateObject(object)
noReps <- if (is.null(modelMatrix)) {
mmtest <- getModelMatrix(object)
nrow(mmtest) == ncol(mmtest)
} else {
nrow(modelMatrix) == ncol(modelMatrix)
}
if (noReps) {
stop("
The design matrix has the same number of samples and coefficients to fit,
so estimation of dispersion is not possible. Treating samples
as replicates was deprecated in v1.20 and no longer supported since v1.22.
")
}
TRUE
}
#' Estimate the dispersions for a DESeqDataSet
#'
#' This function obtains dispersion estimates for Negative Binomial distributed data.
#'
#' Typically the function is called with the idiom:
#'
#' \code{dds <- estimateDispersions(dds)}
#'
#' The fitting proceeds as follows: for each gene, an estimate of the dispersion
#' is found which maximizes the Cox Reid-adjusted profile likelihood
#' (the methods of Cox Reid-adjusted profile likelihood maximization for
#' estimation of dispersion in RNA-Seq data were developed by McCarthy,
#' et al. (2012), first implemented in the edgeR package in 2010);
#' a trend line capturing the dispersion-mean relationship is fit to the maximum likelihood estimates;
#' a normal prior is determined for the log dispersion estimates centered
#' on the predicted value from the trended fit
#' with variance equal to the difference between the observed variance of the
#' log dispersion estimates and the expected sampling variance;
#' finally maximum a posteriori dispersion estimates are returned.
#' This final dispersion parameter is used in subsequent tests.
#' The final dispersion estimates can be accessed from an object using \code{\link{dispersions}}.
#' The fitted dispersion-mean relationship is also used in
#' \code{\link{varianceStabilizingTransformation}}.
#' All of the intermediate values (gene-wise dispersion estimates, fitted dispersion
#' estimates from the trended fit, etc.) are stored in \code{mcols(dds)}, with
#' information about these columns in \code{mcols(mcols(dds))}.
#'
#' The log normal prior on the dispersion parameter has been proposed
#' by Wu, et al. (2012) and is also implemented in the DSS package.
#'
#' In DESeq2, the dispersion estimation procedure described above replaces the
#' different methods of dispersion from the previous version of the DESeq package.
#'
#' Since version 1.29, DESeq2 can call the glmGamPoi package, which can speed up the inference
#' and is optimized for fitting many samles with very small counts (for example single cell
#' RNA-seq data). To call functions from the glmGamPoi package, make sure that it is installed
#' and set \code{fitType = "glmGamPoi"}. In addition, to the gene estimates, the trend and the MAP,
#' the glmGamPoi package calculates the corresponding quasi-likelihood estimates. Those can be
#' used with the \code{nbinomLRT()} test to get more precise p-value estimates.
#'
#' The lower-level functions called by \code{estimateDispersions} are:
#' \code{\link{estimateDispersionsGeneEst}},
#' \code{\link{estimateDispersionsFit}}, and
#' \code{\link{estimateDispersionsMAP}}.
#'
#' @docType methods
#' @name estimateDispersions
#' @rdname estimateDispersions
#' @aliases estimateDispersions estimateDispersions,DESeqDataSet-method
#' @param object a DESeqDataSet
#' @param fitType either "parametric", "local", "mean", or "glmGamPoi"
#' for the type of fitting of dispersions to the mean intensity.
#' \itemize{
#' \item parametric - fit a dispersion-mean relation of the form:
#' \deqn{dispersion = asymptDisp + extraPois / mean}
#' via a robust gamma-family GLM. The coefficients \code{asymptDisp} and \code{extraPois}
#' are given in the attribute \code{coefficients} of the \code{\link{dispersionFunction}}
#' of the object.
#' \item local - use the locfit package to fit a local regression
#' of log dispersions over log base mean (normal scale means and dispersions
#' are input and output for \code{\link{dispersionFunction}}). The points
#' are weighted by normalized mean count in the local regression.
#' \item mean - use the mean of gene-wise dispersion estimates.
#' \item glmGamPoi - use the glmGamPoi package to fit the gene-wise dispersion, its trend
#' and calculate the MAP based on the quasi-likelihood framework. The trend is
#' calculated using a local median regression.
#' }
#' @param maxit control parameter: maximum number of iterations to allow for convergence
#' @param useCR whether to use Cox-Reid correction - see McCarthy et al (2012)
#' @param weightThreshold threshold for subsetting the design matrix and GLM weights
#' for calculating the Cox-Reid correction
#' @param quiet whether to print messages at each step
#' @param modelMatrix an optional matrix which will be used for fitting the expected counts.
#' by default, the model matrix is constructed from \code{design(object)}
#' @param minmu lower bound on the estimated count for fitting gene-wise dispersion
#'
#' @return The DESeqDataSet passed as parameters, with the dispersion information
#' filled in as metadata columns, accessible via \code{mcols}, or the final dispersions
#' accessible via \code{\link{dispersions}}.
#'
#' @references \itemize{
#' \item Simon Anders, Wolfgang Huber: Differential expression analysis for sequence count data.
#' Genome Biology 11 (2010) R106, \url{http://dx.doi.org/10.1186/gb-2010-11-10-r106}
#' \item McCarthy, DJ, Chen, Y, Smyth, GK: Differential expression analysis of multifactor RNA-Seq
#' experiments with respect to biological variation. Nucleic Acids Research 40 (2012), 4288-4297,
#' \url{http://dx.doi.org/10.1093/nar/gks042}
#' \item Wu, H., Wang, C. & Wu, Z. A new shrinkage estimator for dispersion improves differential
#' expression detection in RNA-seq data. Biostatistics (2012).
#' \url{http://dx.doi.org/10.1093/biostatistics/kxs033}
#' \item Ahlmann-Eltze, C., Huber, W. glmGamPoi: Fitting Gamma-Poisson Generalized Linear Models on Single Cell Count Data. bioRxiv (2020).
#' \url{https://doi.org/10.1101/2020.08.13.249623}
#' }
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet()
#' dds <- estimateSizeFactors(dds)
#' dds <- estimateDispersions(dds)
#' head(dispersions(dds))
#'
#' @export
setMethod("estimateDispersions", signature(object="DESeqDataSet"),
estimateDispersions.DESeqDataSet)
#' Show method for DESeqResults objects
#'
#' Prints out the information from the metadata columns
#' of the results object regarding the log2 fold changes
#' and p-values, then shows the DataFrame using the
#' standard method.
#'
#' @docType methods
#' @name show
#' @rdname show
#' @aliases show show,DESeqResults-method
#' @author Michael Love
#'
#' @param object a DESeqResults object
#'
#' @export
setMethod("show", signature(object="DESeqResults"), function(object) {
cat(mcols(object)$description[ colnames(object) == "log2FoldChange"],"\n")
cat(mcols(object)$description[ colnames(object) == "pvalue"],"\n")
show(DataFrame(object))
})
#' Extract a matrix of model coefficients/standard errors
#'
#' \strong{Note:} results tables with log2 fold change, p-values, adjusted p-values, etc.
#' for each gene are best generated using the \code{\link{results}} function. The \code{coef}
#' function is designed for advanced users who wish to inspect all model coefficients at once.
#'
#' Estimated model coefficients or estimated standard errors are provided in a matrix
#' form, number of genes by number of parameters, on the log2 scale.
#' The columns correspond to columns of the model matrix for final GLM fitting, i.e.,
#' \code{attr(dds, "modelMatrix")}.
#'
#' @param object a DESeqDataSet returned by \code{\link{DESeq}}, \code{\link{nbinomWaldTest}},
#' or \code{\link{nbinomLRT}}.
#' @param SE whether to give the standard errors instead of coefficients.
#' defaults to FALSE so that the coefficients are given.
#' @param ... additional arguments
#'
#' @name coef
#' @rdname coef
#' @aliases coef coef.DESeqDataSet
#' @author Michael Love
#' @importFrom stats coef
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet(m=4)
#' dds <- DESeq(dds)
#' coef(dds)[1,]
#' coef(dds, SE=TRUE)[1,]
#'
#' @method coef DESeqDataSet
#' @export
coef.DESeqDataSet <- function(object, SE=FALSE, ...) {
# Temporary hack for backward compatibility with "old" DESeqDataSet
# objects. Remove once all serialized DESeqDataSet objects around have
# been updated.
if (!.hasSlot(object, "rowRanges"))
object <- updateObject(object)
resNms <- resultsNames(object)
if (length(resNms) == 0) {
stop("no coefficients have been generated yet, first call DESeq()")
}
if (!SE) {
as.matrix(mcols(object,use.names=TRUE)[resNms])
} else {
as.matrix(mcols(object,use.names=TRUE)[paste0("SE_",resNms)])
}
}
summary.DESeqResults <- function(object, alpha, ...) {
sval <- "svalue" %in% names(object)
if (sval) {
test.col <- "svalue"
test.col.name <- "s-value"
} else {
test.col <- "padj"
test.col.name <- "adjusted p-value"
}
if (missing(alpha)) {
if (sval) {
alpha <- 0.005
} else {
if (is.null(metadata(object)$alpha)) {
alpha <- 0.1
} else {
alpha <- metadata(object)$alpha
}
}
}
if (!is.null(metadata(object)$lfcThreshold)) {
T <- metadata(object)$lfcThreshold
pT <- sprintf("%.2f (up) ", T)
mT <- sprintf("%.2f (down) ", -T)
} else {
T <- 0
}
if (T == 0) {
pT <- "0 (up) "
mT <- "0 (down) "
}
cat("\n")
notallzero <- sum(object$baseMean > 0)
up <- sum(object[[test.col]] < alpha & object$log2FoldChange > T, na.rm=TRUE)
down <- sum(object[[test.col]] < alpha & object$log2FoldChange < T, na.rm=TRUE)
if (!sval) {
filt <- sum(!is.na(object$pvalue) & is.na(object$padj))
outlier <- sum(object$baseMean > 0 & is.na(object$pvalue))
if (is.null(metadata(object)$filterThreshold)) {
ft <- 0
} else {
ft <- round(metadata(object)$filterThreshold)
}
}
ihw <- !sval & "ihwResult" %in% names(metadata(object))
printsig <- function(x) format(x, digits=2)
cat(paste("out of",notallzero,"with nonzero total read count\n"))
cat(paste0(test.col.name," < ",alpha,"\n"))
cat(paste0("LFC > ",pT,": ",up,", ",printsig(up/notallzero*100),"%\n"))
cat(paste0("LFC < ",mT,": ",down,", ",printsig(down/notallzero*100),"%\n"))
if (!sval) cat(paste0("outliers [1] : ",outlier,", ",printsig(outlier/notallzero*100),"%\n"))
if (!sval & !ihw) cat(paste0("low counts [2] : ",filt,", ",printsig(filt/notallzero*100),"%\n"))
if (!sval & !ihw) cat(paste0("(mean count < ",ft,")\n"))
if (!sval) cat("[1] see 'cooksCutoff' argument of ?results\n")
if (!sval & !ihw) cat("[2] see 'independentFiltering' argument of ?results\n")
if (ihw) cat("see metadata(res)$ihwResult on hypothesis weighting\n")
cat("\n")
}
#' Summarize DESeq results
#'
#' Print a summary of the results from a DESeq analysis.
#'
#' @param object a \code{\link{DESeqResults}} object
#' @param alpha the adjusted p-value cutoff. If not set, this
#' defaults to the \code{alpha} argument which was used in
#' \code{\link{results}} to set the target FDR for independent
#' filtering, or if independent filtering was not performed,
#' to 0.1.
#' @param ... additional arguments
#'
#' @docType methods
#' @name summary
#' @rdname summary
#' @aliases summary summary,DESeqResults-method
#' @author Michael Love
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet(m=4)
#' dds <- DESeq(dds)
#' res <- results(dds)
#' summary(res)
#'
#' @method summary DESeqResults
#' @export
setMethod("summary", signature(object="DESeqResults"), summary.DESeqResults)
#' Accessors for the 'priorInfo' slot of a DESeqResults object.
#'
#' The priorInfo slot contains details about the prior on log fold changes
#'
#' @docType methods
#' @name priorInfo
#' @rdname priorInfo
#' @aliases priorInfo priorInfo,DESeqResults-method priorInfo<-,DESeqResults,list-method
#'
#' @param object a \code{DESeqResults} object
#' @param value a \code{list}
#' @param ... additional arguments
#'
#' @export
setMethod("priorInfo", signature(object="DESeqResults"),
function(object) object@priorInfo)
#' @name priorInfo
#' @rdname priorInfo
#' @exportMethod "priorInfo<-"
setReplaceMethod("priorInfo", signature(object="DESeqResults", value="list"),
function(object, value) {
object@priorInfo <- value
object
})
|