1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plots.R
\name{plotSparsity}
\alias{plotSparsity}
\title{Sparsity plot}
\usage{
plotSparsity(x, normalized = TRUE, ...)
}
\arguments{
\item{x}{a matrix or DESeqDataSet}
\item{normalized}{whether to normalize the counts from a DESeqDataSEt}
\item{...}{passed to \code{plot}}
}
\description{
A simple plot of the concentration of counts in a single sample over the
sum of counts per gene. Not technically the same as "sparsity", but this
plot is useful diagnostic for datasets which might not fit a negative
binomial assumption: genes with many zeros and individual very large
counts are difficult to model with the negative binomial distribution.
}
\examples{
dds <- makeExampleDESeqDataSet(n=1000,m=4,dispMeanRel=function(x) .5)
dds <- estimateSizeFactors(dds)
plotSparsity(dds)
}
|