1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
---
title: "DirichletMultinomial for Clustering and Classification of Microbiome Data"
date: "`r BiocStyle::doc_date()`"
author:
- name: Martin Morgan
affiliation:
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
vignette: >
%\VignetteIndexEntry{DirichletMultinomial for Clustering and Classification of Microbiome Data}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
output:
BiocStyle::html_document:
toc_float: true
package: DirichletMultinomial
---
Modified: 6 March 2012, 19 October 2024 (HTML version)
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
This document illustrates the main features of the
*DirichletMultinomial* package, and in the process replicates key
tables and figures from Holmes et al.,
<https://doi.org/10.1371/journal.pone.0030126>.
We start by loading the package, in addition to the packages *lattice*
(for visualization) and *parallel* (for use of multiple cores during
cross-validation).
```{r library, message = FALSE}
library(DirichletMultinomial)
library(lattice)
library(parallel)
```
We set the width of [R]{.sans-serif} output to 70 characters, and the
number of floating point digits displayed to two. The `full` flag is
set to `FALSE`, so that cached values are used instead of re-computing
during production of this vignette. The package defines a set of
standard colors; we use `.qualitative` during visualization.
```{r colors}
options(width=70, digits=2)
full <- FALSE
.qualitative <- DirichletMultinomial:::.qualitative
```
# Data
The data used in Homes et al. is included in the package. We read the
data in to a matrix `count` of samples by taxa.
```{r data-input}
fl <- system.file(package="DirichletMultinomial", "extdata", "Twins.csv")
count <- t(as.matrix(read.csv(fl, row.names=1)))
count[1:5, 1:3]
```
The figure below shows the distribution of reads from each taxon, on a
log scale.
```{r taxon-counts}
cnts <- log10(colSums(count))
densityplot(
cnts, xlim=range(cnts),
xlab="Taxon representation (log 10 count)"
)
```
# Clustering
The `dmn` function fits a Dirichlet-Multinomial model, taking as input
the count data and a parameter $k$ representing the number of
Dirichlet components to model. Here we fit the count data to values of
$k$ from 1 to 7, displaying the result for $k = 4$. A sense of the
model return value is provided by the documentation for the
[R]{.sans-serif} object `fit`, `class ? DMN`.
```{r fit}
if (full) {
fit <- mclapply(1:7, dmn, count=count, verbose=TRUE)
save(fit, file=file.path(tempdir(), "fit.rda"))
} else data(fit)
fit[[4]]
```
The return value can be queried for measures of fit (Laplace, AIC,
BIC); these are plotted for different $k$ in The figure. The best fit
is for $k=4$ distinct Dirichlet components.
```{r min-laplace, figure=TRUE}
lplc <- sapply(fit, laplace)
plot(lplc, type="b", xlab="Number of Dirichlet Components", ylab="Model Fit")
(best <- fit[[which.min(lplc)]])
```
In addition to `laplace` goodness of fit can be assessed with the `AIC`
and `BIC` functions.
The `mixturewt` function reports the weight $\pi$ and homogeneity
$\theta$ (large values are more homogeneous) of the fitted model.
`mixture` returns a matrix of sample x estimated Dirichlet components;
the argument `assign` returns a vector of length equal to the number
of samples indicating the component with maximum value.
```{r mix-weight}
mixturewt(best)
head(mixture(best), 3)
```
The `fitted` function describes the contribution of each taxonomic
group (each point in the panels of the figure to the Dirichlet
components; the diagonal nature of the points in a panel suggest that
the Dirichlet components are correlated, perhaps reflecting overall
numerical abundance.
```{r fitted}
splom(log(fitted(best)))
```
The posterior mean difference between the best and single-component
Dirichlet multinomial model measures how each component differs from
the population average; the sum is a measure of total difference from
the mean.
```{r posterior-mean-diff}
p0 <- fitted(fit[[1]], scale=TRUE) # scale by theta
p4 <- fitted(best, scale=TRUE)
colnames(p4) <- paste("m", 1:4, sep="")
(meandiff <- colSums(abs(p4 - as.vector(p0))))
sum(meandiff)
```
The table below summarizes taxonomic contributions to each Dirichlet
component.
```{r table-1}
diff <- rowSums(abs(p4 - as.vector(p0)))
o <- order(diff, decreasing=TRUE)
cdiff <- cumsum(diff[o]) / sum(diff)
df <- cbind(Mean=p0[o], p4[o,], diff=diff[o], cdiff)
DT::datatable(df) |>
DT::formatRound(colnames(df), digits = 4)
```
The figure shows samples arranged by Dirichlet component, with samples
placed into the component for which they had the largest fitted value.
```{r heatmap-similarity}
heatmapdmn(count, fit[[1]], best, 30)
```
# Generative classifier
The following reads in phenotypic information ('Lean', 'Obese',
'Overweight') for each sample.
```{r twin-pheno}
fl <- system.file(package="DirichletMultinomial", "extdata", "TwinStudy.t")
pheno0 <- scan(fl)
lvls <- c("Lean", "Obese", "Overwt")
pheno <- factor(lvls[pheno0 + 1], levels=lvls)
names(pheno) <- rownames(count)
table(pheno)
```
Here we subset the count data into sub-counts, one for each phenotype.
We retain only the Lean and Obese groups for subsequent analysis.
```{r subsets}
counts <- lapply(levels(pheno), csubset, count, pheno)
sapply(counts, dim)
keep <- c("Lean", "Obese")
count <- count[pheno %in% keep,]
pheno <- factor(pheno[pheno %in% keep], levels=keep)
```
The `dmngroup` function identifies the best (minimum Laplace score)
Dirichlet-multinomial model for each group.
```{r fit-several-}
if (full) {
bestgrp <- dmngroup(
count, pheno, k=1:5, verbose=TRUE, mc.preschedule=FALSE
)
save(bestgrp, file=file.path(tempdir(), "bestgrp.rda"))
} else data(bestgrp)
```
The Lean group is described by a model with one component, the Obese
group by a model with three components. Three of the four Dirichlet
components of the original single group (`best`) model are represented
in the Obese group, the other in the Lean group. The total Laplace score
of the two group model is less than of the single-group model,
indicating information gain from considering groups separately.
```{r best-several}
bestgrp
lapply(bestgrp, mixturewt)
c(
sapply(bestgrp, laplace),
'Lean+Obese' = sum(sapply(bestgrp, laplace)),
Single = laplace(best)
)
```
The `predict` function assigns samples to classes; the confusion matrix
shows that the classifier is moderately effective.
```{r confusion}
xtabs(~pheno + predict(bestgrp, count, assign=TRUE))
```
The `cvdmngroup` function performs cross-validation. This is a
computationally expensive step.
```{r cross-validate}
if (full) {
## full leave-one-out; expensive!
xval <- cvdmngroup(
nrow(count), count, c(Lean=1, Obese=3), pheno,
verbose=TRUE, mc.preschedule=FALSE
)
save(xval, file=file.path(tempdir(), "xval.rda"))
} else data(xval)
```
The figure shows an ROC curve for the single and two-group
classifier. The single group classifier is performing better than the
two-group classifier.
```{r ROC-dmngroup}
bst <- roc(pheno[rownames(count)] == "Obese",
predict(bestgrp, count)[,"Obese"])
bst$Label <- "Single"
two <- roc(pheno[rownames(xval)] == "Obese", xval[,"Obese"])
two$Label <- "Two group"
both <- rbind(bst, two)
pars <- list(superpose.line=list(col=.qualitative[1:2], lwd=2))
xyplot(
TruePostive ~ FalsePositive, group=Label, both,
type="l", par.settings=pars,
auto.key=list(lines=TRUE, points=FALSE, x=.6, y=.1),
xlab="False Positive", ylab="True Positive"
)
```
```{r sessionInfo}
sessionInfo()
```
|