1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
\name{MDPlot-methods}
\docType{methods}
\alias{MDPlot}
\alias{MDPlot-methods}
\alias{MDPlot,matrix,numeric-method}
\alias{MDPlot,SeqExpressionSet,numeric-method}
\title{ Methods for Function \code{MDPlot} in Package \pkg{EDASeq} }
\description{
\code{MDPlot} produces a mean-difference smooth scatterplot of two lanes in an experiment.
}
\usage{
MDPlot(x,y,...)
}
\arguments{
\item{x}{Either a numeric matrix or a \code{\linkS4class{SeqExpressionSet}} object containing the gene expression.
}
\item{y}{A numeric vecor specifying the lanes to be compared.}
\item{...}{See \code{\link{par}}}
}
\details{
The mean-difference (MD) plot is a useful plot to visualize difference in two lanes of an experiment. From a MDPlot one can see if normalization is needed and if a linear scaling is sufficient or nonlinear normalization is more effective.
The MDPlot also plots a lowess fit (in red) underlying a possible trend in the bias related to the mean expression.
}
\section{Methods}{
\describe{
\item{\code{signature(x = "matrix", y = "numeric")}}{
}
\item{\code{signature(x = "SeqExpressionSet", y = "numeric")}}{
}
}}
\keyword{methods}
\examples{
library(yeastRNASeq)
data(geneLevelData)
data(yeastGC)
sub <- intersect(rownames(geneLevelData), names(yeastGC))
mat <- as.matrix(geneLevelData[sub,])
data <- newSeqExpressionSet(mat,
phenoData=AnnotatedDataFrame(
data.frame(conditions=factor(c("mut", "mut", "wt", "wt")),
row.names=colnames(geneLevelData))),
featureData=AnnotatedDataFrame(data.frame(gc=yeastGC[sub])))
MDPlot(data,c(1,3))
}
|