File: edgeR-Tests.R

package info (click to toggle)
r-bioc-edger 3.14.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,176 kB
  • ctags: 159
  • sloc: cpp: 964; ansic: 661; sh: 21; makefile: 5
file content (131 lines) | stat: -rw-r--r-- 4,089 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
library(edgeR)

set.seed(0); u <- runif(100)

# generate raw counts from NB, create list object
y <- matrix(rnbinom(80,size=5,mu=10),nrow=20)
y <- rbind(0,c(0,0,2,2),y)
rownames(y) <- paste("Tag",1:nrow(y),sep=".")
d <- DGEList(counts=y,group=rep(1:2,each=2),lib.size=1001:1004)

# estimate common dispersion and find differences in expression
d <- estimateCommonDisp(d)
d$common.dispersion
de <- exactTest(d)
summary(de$table)
topTags(de)

d2 <- estimateTagwiseDisp(d,trend="none",prior.df=20)
summary(d2$tagwise.dispersion)
de <- exactTest(d2,dispersion="common")
topTags(de)

de <- exactTest(d2)
topTags(de)

d2 <- estimateTagwiseDisp(d,trend="movingave",span=0.4,prior.df=20)
summary(d2$tagwise.dispersion)
de <- exactTest(d2)
topTags(de)

summary(exactTest(d2,rejection="smallp")$table$PValue)
summary(exactTest(d2,rejection="deviance")$table$PValue)

d2 <- estimateTagwiseDisp(d,trend="loess",span=0.8,prior.df=20)
summary(d2$tagwise.dispersion)
de <- exactTest(d2)
topTags(de)

d2 <- estimateTagwiseDisp(d,trend="tricube",span=0.8,prior.df=20)
summary(d2$tagwise.dispersion)
de <- exactTest(d2)
topTags(de)

# mglmOneWay
design <- model.matrix(~group,data=d$samples)
mglmOneWay(d[1:10,],design,dispersion=0.2)
mglmOneWay(d[1:10,],design,dispersion=0)

fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5/4)
lrt <- glmLRT(fit,coef=2)
topTags(lrt)

fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5)
summary(fit$coef)

fit <- glmFit(d,design,prior.count=0.5/4)
lrt <- glmLRT(fit,coef=2)
topTags(lrt)

dglm <- estimateGLMCommonDisp(d,design)
dglm$common.dispersion
dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20)
summary(dglm$tagwise.dispersion)
fit <- glmFit(dglm,design,prior.count=0.5/4)
lrt <- glmLRT(fit,coef=2)
topTags(lrt)
dglm <- estimateGLMTrendedDisp(dglm,design)
summary(dglm$trended.dispersion)
dglm <- estimateGLMTrendedDisp(dglm,design,method="power")
summary(dglm$trended.dispersion)
dglm <- estimateGLMTrendedDisp(dglm,design,method="spline")
summary(dglm$trended.dispersion)
dglm <- estimateGLMTrendedDisp(dglm,design,method="bin.spline")
summary(dglm$trended.dispersion)
dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20)
summary(dglm$tagwise.dispersion)

# Continuous trend
nlibs <- 3
ntags <- 1000
dispersion.true <- 0.1
# Make first transcript respond to covariate x
x <- 0:2
design <- model.matrix(~x)
beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1)))
mu.true <- 2^(beta.true %*% t(design))
# Generate count data
y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true)
y <- matrix(y,ntags,nlibs)
colnames(y) <- c("x0","x1","x2")
rownames(y) <- paste("Gene",1:ntags,sep="")
d <- DGEList(y)
d <- calcNormFactors(d)
fit <- glmFit(d, design, dispersion=dispersion.true, prior.count=0.5/3)
results <- glmLRT(fit, coef=2)
topTags(results)
d1 <- estimateGLMCommonDisp(d, design, verbose=TRUE)
glmFit(d,design,dispersion=dispersion.true, prior.count=0.5/3)

# Exact tests
y <- matrix(rnbinom(20,mu=10,size=3/2),5,4)
group <- factor(c(1,1,2,2))
ys <- splitIntoGroupsPseudo(y,group,pair=c(1,2))
exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3)

y <- matrix(rnbinom(5*7,mu=10,size=3/2),5,7)
group <- factor(c(1,1,2,2,3,3,3))
ys <- splitIntoGroupsPseudo(y,group,pair=c(1,3))
exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3)
exactTestBetaApprox(ys$y1,ys$y2,dispersion=2/3)

y[1,3:4] <- 0
design <- model.matrix(~group)
fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7)
summary(fit$coef)

lrt <- glmLRT(fit,contrast=cbind(c(0,1,0),c(0,0,1)))
topTags(lrt)
design <- model.matrix(~0+group)
fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7)
lrt <- glmLRT(fit,contrast=cbind(c(-1,1,0),c(0,-1,1),c(-1,0,1)))
topTags(lrt)

# simple Good-Turing algorithm runs.
test1<-1:9
freq1<-c(2018046, 449721, 188933, 105668, 68379, 48190, 35709, 37710, 22280)
goodTuring(rep(test1, freq1))
test2<-c(312, 14491, 16401, 65124, 129797, 323321, 366051, 368599, 405261, 604962)
goodTuring(test2)