1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
R version 3.2.4 Revised (2016-03-16 r70336) -- "Very Secure Dishes"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(edgeR)
Loading required package: limma
>
> set.seed(0); u <- runif(100)
>
> # generate raw counts from NB, create list object
> y <- matrix(rnbinom(80,size=5,mu=10),nrow=20)
> y <- rbind(0,c(0,0,2,2),y)
> rownames(y) <- paste("Tag",1:nrow(y),sep=".")
> d <- DGEList(counts=y,group=rep(1:2,each=2),lib.size=1001:1004)
>
> # estimate common dispersion and find differences in expression
> d <- estimateCommonDisp(d)
> d$common.dispersion
[1] 0.210292
> de <- exactTest(d)
> summary(de$table)
logFC logCPM PValue
Min. :-1.7266 Min. :10.96 Min. :0.01976
1st Qu.:-0.4855 1st Qu.:13.21 1st Qu.:0.33120
Median : 0.2253 Median :13.37 Median :0.56514
Mean : 0.1877 Mean :13.26 Mean :0.54504
3rd Qu.: 0.5258 3rd Qu.:13.70 3rd Qu.:0.81052
Max. : 4.0861 Max. :14.31 Max. :1.00000
> topTags(de)
Comparison of groups: 2-1
logFC logCPM PValue FDR
Tag.17 2.0450964 13.73726 0.01975954 0.4347099
Tag.21 -1.7265870 13.38327 0.06131012 0.6744114
Tag.6 -1.6329986 12.81479 0.12446044 0.8982100
Tag.2 4.0861092 11.54121 0.16331090 0.8982100
Tag.16 0.9324996 13.57074 0.29050785 0.9655885
Tag.20 0.8543138 13.76364 0.31736609 0.9655885
Tag.12 0.7081170 14.31389 0.37271028 0.9655885
Tag.19 -0.7976602 13.31405 0.40166354 0.9655885
Tag.3 -0.7300410 13.54155 0.42139935 0.9655885
Tag.8 -0.7917906 12.86353 0.47117217 0.9655885
>
> d2 <- estimateTagwiseDisp(d,trend="none",prior.df=20)
> summary(d2$tagwise.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1757 0.1896 0.1989 0.2063 0.2185 0.2677
> de <- exactTest(d2,dispersion="common")
> topTags(de)
Comparison of groups: 2-1
logFC logCPM PValue FDR
Tag.17 2.0450964 13.73726 0.01975954 0.4347099
Tag.21 -1.7265870 13.38327 0.06131012 0.6744114
Tag.6 -1.6329986 12.81479 0.12446044 0.8982100
Tag.2 4.0861092 11.54121 0.16331090 0.8982100
Tag.16 0.9324996 13.57074 0.29050785 0.9655885
Tag.20 0.8543138 13.76364 0.31736609 0.9655885
Tag.12 0.7081170 14.31389 0.37271028 0.9655885
Tag.19 -0.7976602 13.31405 0.40166354 0.9655885
Tag.3 -0.7300410 13.54155 0.42139935 0.9655885
Tag.8 -0.7917906 12.86353 0.47117217 0.9655885
>
> de <- exactTest(d2)
> topTags(de)
Comparison of groups: 2-1
logFC logCPM PValue FDR
Tag.17 2.0450987 13.73726 0.01327001 0.2919403
Tag.21 -1.7265897 13.38327 0.05683886 0.6252275
Tag.6 -1.6329910 12.81479 0.11460208 0.8404152
Tag.2 4.0861092 11.54121 0.16126207 0.8869414
Tag.16 0.9324975 13.57074 0.28103256 0.9669238
Tag.20 0.8543178 13.76364 0.30234789 0.9669238
Tag.12 0.7081149 14.31389 0.37917895 0.9669238
Tag.19 -0.7976633 13.31405 0.40762735 0.9669238
Tag.3 -0.7300478 13.54155 0.40856822 0.9669238
Tag.8 -0.7918243 12.86353 0.49005179 0.9669238
>
> d2 <- estimateTagwiseDisp(d,trend="movingave",span=0.4,prior.df=20)
> summary(d2$tagwise.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1005 0.1629 0.2064 0.2077 0.2585 0.3164
> de <- exactTest(d2)
> topTags(de)
Comparison of groups: 2-1
logFC logCPM PValue FDR
Tag.17 2.0450951 13.73726 0.02427872 0.5341319
Tag.21 -1.7265927 13.38327 0.05234833 0.5758316
Tag.6 -1.6330014 12.81479 0.12846308 0.8954397
Tag.2 4.0861092 11.54121 0.16280722 0.8954397
Tag.16 0.9324887 13.57074 0.24308201 0.9711975
Tag.20 0.8543044 13.76364 0.35534649 0.9711975
Tag.19 -0.7976535 13.31405 0.38873717 0.9711975
Tag.3 -0.7300525 13.54155 0.40001438 0.9711975
Tag.12 0.7080985 14.31389 0.43530227 0.9711975
Tag.8 -0.7918376 12.86353 0.49782701 0.9711975
>
> summary(exactTest(d2,rejection="smallp")$table$PValue)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02428 0.36370 0.55660 0.54320 0.78890 1.00000
> summary(exactTest(d2,rejection="deviance")$table$PValue)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02428 0.36370 0.55660 0.54320 0.78890 1.00000
>
> d2 <- estimateTagwiseDisp(d,trend="loess",span=0.8,prior.df=20)
> summary(d2$tagwise.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1165 0.1449 0.1832 0.1848 0.2116 0.2825
> de <- exactTest(d2)
> topTags(de)
Comparison of groups: 2-1
logFC logCPM PValue FDR
Tag.17 2.0450979 13.73726 0.01546795 0.3402949
Tag.21 -1.7266049 13.38327 0.03545446 0.3899990
Tag.6 -1.6329841 12.81479 0.10632987 0.7797524
Tag.2 4.0861092 11.54121 0.16057893 0.8831841
Tag.16 0.9324935 13.57074 0.26348818 0.9658389
Tag.20 0.8543140 13.76364 0.31674090 0.9658389
Tag.19 -0.7976354 13.31405 0.35564858 0.9658389
Tag.3 -0.7300593 13.54155 0.38833737 0.9658389
Tag.12 0.7081041 14.31389 0.41513004 0.9658389
Tag.8 -0.7918152 12.86353 0.48483449 0.9658389
>
> d2 <- estimateTagwiseDisp(d,trend="tricube",span=0.8,prior.df=20)
> summary(d2$tagwise.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1165 0.1449 0.1832 0.1848 0.2116 0.2825
> de <- exactTest(d2)
> topTags(de)
Comparison of groups: 2-1
logFC logCPM PValue FDR
Tag.17 2.0450979 13.73726 0.01546795 0.3402949
Tag.21 -1.7266049 13.38327 0.03545446 0.3899990
Tag.6 -1.6329841 12.81479 0.10632987 0.7797524
Tag.2 4.0861092 11.54121 0.16057893 0.8831841
Tag.16 0.9324935 13.57074 0.26348818 0.9658389
Tag.20 0.8543140 13.76364 0.31674090 0.9658389
Tag.19 -0.7976354 13.31405 0.35564858 0.9658389
Tag.3 -0.7300593 13.54155 0.38833737 0.9658389
Tag.12 0.7081041 14.31389 0.41513004 0.9658389
Tag.8 -0.7918152 12.86353 0.48483449 0.9658389
>
> # mglmOneWay
> design <- model.matrix(~group,data=d$samples)
> mglmOneWay(d[1:10,],design,dispersion=0.2)
$coefficients
(Intercept) group2
[1,] -1.000000e+08 0.000000e+00
[2,] -1.000000e+08 1.000000e+08
[3,] 2.525729e+00 -5.108256e-01
[4,] 2.525729e+00 1.484200e-01
[5,] 2.140066e+00 -1.941560e-01
[6,] 2.079442e+00 -1.163151e+00
[7,] 2.014903e+00 2.363888e-01
[8,] 1.945910e+00 -5.596158e-01
[9,] 1.504077e+00 2.006707e-01
[10,] 2.302585e+00 2.623643e-01
$fitted.values
[,1] [,2] [,3] [,4]
[1,] 0.0 0.0 0.0 0.0
[2,] 0.0 0.0 2.0 2.0
[3,] 12.5 12.5 7.5 7.5
[4,] 12.5 12.5 14.5 14.5
[5,] 8.5 8.5 7.0 7.0
[6,] 8.0 8.0 2.5 2.5
[7,] 7.5 7.5 9.5 9.5
[8,] 7.0 7.0 4.0 4.0
[9,] 4.5 4.5 5.5 5.5
[10,] 10.0 10.0 13.0 13.0
> mglmOneWay(d[1:10,],design,dispersion=0)
$coefficients
(Intercept) group2
[1,] -1.000000e+08 0.000000e+00
[2,] -1.000000e+08 1.000000e+08
[3,] 2.525729e+00 -5.108256e-01
[4,] 2.525729e+00 1.484200e-01
[5,] 2.140066e+00 -1.941560e-01
[6,] 2.079442e+00 -1.163151e+00
[7,] 2.014903e+00 2.363888e-01
[8,] 1.945910e+00 -5.596158e-01
[9,] 1.504077e+00 2.006707e-01
[10,] 2.302585e+00 2.623643e-01
$fitted.values
[,1] [,2] [,3] [,4]
[1,] 0.0 0.0 0.0 0.0
[2,] 0.0 0.0 2.0 2.0
[3,] 12.5 12.5 7.5 7.5
[4,] 12.5 12.5 14.5 14.5
[5,] 8.5 8.5 7.0 7.0
[6,] 8.0 8.0 2.5 2.5
[7,] 7.5 7.5 9.5 9.5
[8,] 7.0 7.0 4.0 4.0
[9,] 4.5 4.5 5.5 5.5
[10,] 10.0 10.0 13.0 13.0
>
> fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5/4)
> lrt <- glmLRT(fit,coef=2)
> topTags(lrt)
Coefficient: group2
logFC logCPM LR PValue FDR
Tag.17 2.0450964 13.73726 6.0485417 0.01391779 0.3058698
Tag.2 4.0861092 11.54121 4.8400340 0.02780635 0.3058698
Tag.21 -1.7265870 13.38327 4.0777825 0.04345065 0.3186381
Tag.6 -1.6329986 12.81479 3.0078205 0.08286364 0.4557500
Tag.16 0.9324996 13.57074 1.3477682 0.24566867 0.8276702
Tag.20 0.8543138 13.76364 1.1890032 0.27553071 0.8276702
Tag.19 -0.7976602 13.31405 0.9279151 0.33540526 0.8276702
Tag.12 0.7081170 14.31389 0.9095513 0.34023349 0.8276702
Tag.3 -0.7300410 13.54155 0.8300307 0.36226364 0.8276702
Tag.8 -0.7917906 12.86353 0.7830377 0.37621371 0.8276702
>
> fit <- glmFit(d,design,dispersion=d$common.dispersion,prior.count=0.5)
> summary(fit$coef)
(Intercept) group2
Min. :-7.604 Min. :-1.13681
1st Qu.:-4.895 1st Qu.:-0.32341
Median :-4.713 Median : 0.15083
Mean :-4.940 Mean : 0.07817
3rd Qu.:-4.524 3rd Qu.: 0.35163
Max. :-4.107 Max. : 1.60864
>
> fit <- glmFit(d,design,prior.count=0.5/4)
> lrt <- glmLRT(fit,coef=2)
> topTags(lrt)
Coefficient: group2
logFC logCPM LR PValue FDR
Tag.17 2.0450964 13.73726 6.0485417 0.01391779 0.3058698
Tag.2 4.0861092 11.54121 4.8400340 0.02780635 0.3058698
Tag.21 -1.7265870 13.38327 4.0777825 0.04345065 0.3186381
Tag.6 -1.6329986 12.81479 3.0078205 0.08286364 0.4557500
Tag.16 0.9324996 13.57074 1.3477682 0.24566867 0.8276702
Tag.20 0.8543138 13.76364 1.1890032 0.27553071 0.8276702
Tag.19 -0.7976602 13.31405 0.9279151 0.33540526 0.8276702
Tag.12 0.7081170 14.31389 0.9095513 0.34023349 0.8276702
Tag.3 -0.7300410 13.54155 0.8300307 0.36226364 0.8276702
Tag.8 -0.7917906 12.86353 0.7830377 0.37621371 0.8276702
>
> dglm <- estimateGLMCommonDisp(d,design)
> dglm$common.dispersion
[1] 0.2033282
> dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20)
> summary(dglm$tagwise.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1756 0.1879 0.1998 0.2031 0.2135 0.2578
> fit <- glmFit(dglm,design,prior.count=0.5/4)
> lrt <- glmLRT(fit,coef=2)
> topTags(lrt)
Coefficient: group2
logFC logCPM LR PValue FDR
Tag.17 2.0450988 13.73727 6.8001118 0.009115216 0.2005348
Tag.2 4.0861092 11.54122 4.8594088 0.027495756 0.2872068
Tag.21 -1.7265904 13.38327 4.2537154 0.039164558 0.2872068
Tag.6 -1.6329904 12.81479 3.1763761 0.074710253 0.4109064
Tag.16 0.9324970 13.57074 1.4126709 0.234613512 0.8499599
Tag.20 0.8543183 13.76364 1.2721097 0.259371274 0.8499599
Tag.19 -0.7976614 13.31405 0.9190392 0.337727381 0.8499599
Tag.12 0.7081163 14.31389 0.9014515 0.342392806 0.8499599
Tag.3 -0.7300488 13.54155 0.8817937 0.347710872 0.8499599
Tag.8 -0.7918166 12.86353 0.7356185 0.391068049 0.8603497
> dglm <- estimateGLMTrendedDisp(dglm,design)
> summary(dglm$trended.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1522 0.1676 0.1740 0.1887 0.2000 0.3469
> dglm <- estimateGLMTrendedDisp(dglm,design,method="power")
> summary(dglm$trended.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1522 0.1676 0.1740 0.1887 0.2000 0.3469
> dglm <- estimateGLMTrendedDisp(dglm,design,method="spline")
> summary(dglm$trended.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.09353 0.11080 0.15460 0.19010 0.23050 0.52010
> dglm <- estimateGLMTrendedDisp(dglm,design,method="bin.spline")
> summary(dglm$trended.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1997 0.1997 0.1997 0.1997 0.1997 0.1997
> dglm <- estimateGLMTagwiseDisp(dglm,design,prior.df=20)
> summary(dglm$tagwise.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1385 0.1792 0.1964 0.1935 0.2026 0.2709
>
> # Continuous trend
> nlibs <- 3
> ntags <- 1000
> dispersion.true <- 0.1
> # Make first transcript respond to covariate x
> x <- 0:2
> design <- model.matrix(~x)
> beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1)))
> mu.true <- 2^(beta.true %*% t(design))
> # Generate count data
> y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true)
> y <- matrix(y,ntags,nlibs)
> colnames(y) <- c("x0","x1","x2")
> rownames(y) <- paste("Gene",1:ntags,sep="")
> d <- DGEList(y)
> d <- calcNormFactors(d)
> fit <- glmFit(d, design, dispersion=dispersion.true, prior.count=0.5/3)
> results <- glmLRT(fit, coef=2)
> topTags(results)
Coefficient: x
logFC logCPM LR PValue FDR
Gene1 2.907024 13.56183 38.738512 4.845536e-10 4.845536e-07
Gene61 2.855317 10.27136 10.738307 1.049403e-03 5.247015e-01
Gene62 -2.123902 10.53174 8.818703 2.981585e-03 8.334760e-01
Gene134 -1.949073 10.53355 8.125889 4.363759e-03 8.334760e-01
Gene740 -1.610046 10.94907 8.013408 4.643227e-03 8.334760e-01
Gene354 2.022698 10.45066 7.826308 5.149118e-03 8.334760e-01
Gene5 1.856816 10.45249 7.214238 7.232750e-03 8.334760e-01
Gene746 -1.798331 10.53094 6.846262 8.882693e-03 8.334760e-01
Gene110 1.623148 10.68607 6.737984 9.438120e-03 8.334760e-01
Gene383 1.637140 10.75412 6.687530 9.708965e-03 8.334760e-01
> d1 <- estimateGLMCommonDisp(d, design, verbose=TRUE)
Disp = 0.10253 , BCV = 0.3202
> glmFit(d,design,dispersion=dispersion.true, prior.count=0.5/3)
An object of class "DGEGLM"
$coefficients
(Intercept) x
Gene1 -7.391745 2.0149958
Gene2 -7.318483 -0.7611895
Gene3 -6.831702 -0.1399478
Gene4 -7.480255 0.5172002
Gene5 -8.747793 1.2870467
995 more rows ...
$fitted.values
x0 x1 x2
Gene1 2.3570471 18.954454 138.2791328
Gene2 2.5138172 1.089292 0.4282107
Gene3 4.1580452 3.750528 3.0690081
Gene4 2.1012460 3.769592 6.1349937
Gene5 0.5080377 2.136398 8.1502486
995 more rows ...
$deviance
[1] 6.38037545 1.46644913 1.38532340 0.01593969 1.03894513
995 more elements ...
$iter
[1] 8 4 4 4 6
995 more elements ...
$failed
[1] FALSE FALSE FALSE FALSE FALSE
995 more elements ...
$method
[1] "levenberg"
$counts
x0 x1 x2
Gene1 0 30 110
Gene2 2 2 0
Gene3 3 6 2
Gene4 2 4 6
Gene5 1 1 9
995 more rows ...
$unshrunk.coefficients
(Intercept) x
Gene1 -7.437763 2.0412762
Gene2 -7.373370 -0.8796273
Gene3 -6.870127 -0.1465014
Gene4 -7.552642 0.5410832
Gene5 -8.972372 1.3929679
995 more rows ...
$df.residual
[1] 1 1 1 1 1
995 more elements ...
$design
(Intercept) x
1 1 0
2 1 1
3 1 2
attr(,"assign")
[1] 0 1
$offset
[,1] [,2] [,3]
[1,] 8.295172 8.338525 8.284484
[2,] 8.295172 8.338525 8.284484
[3,] 8.295172 8.338525 8.284484
[4,] 8.295172 8.338525 8.284484
[5,] 8.295172 8.338525 8.284484
995 more rows ...
$dispersion
[1] 0.1
$prior.count
[1] 0.1666667
$samples
group lib.size norm.factors
x0 1 4001 1.0008730
x1 1 4176 1.0014172
x2 1 3971 0.9977138
$AveLogCPM
[1] 13.561832 9.682757 10.447014 10.532113 10.452489
995 more elements ...
>
> d2 <- estimateDisp(d, design)
> summary(d2$tagwise.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.05545 0.09511 0.11620 0.11010 0.13330 0.16860
> d2 <- estimateDisp(d, design, prior.df=20)
> summary(d2$tagwise.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.04203 0.08586 0.11280 0.11010 0.12370 0.37410
> d2 <- estimateDisp(d, design, robust=TRUE)
> summary(d2$tagwise.dispersion)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.05545 0.09511 0.11620 0.11010 0.13330 0.16860
>
> # Exact tests
> y <- matrix(rnbinom(20,mu=10,size=3/2),5,4)
> group <- factor(c(1,1,2,2))
> ys <- splitIntoGroupsPseudo(y,group,pair=c(1,2))
> exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3)
[1] 0.1334396 0.6343568 0.7280015 0.7124912 0.3919258
>
> y <- matrix(rnbinom(5*7,mu=10,size=3/2),5,7)
> group <- factor(c(1,1,2,2,3,3,3))
> ys <- splitIntoGroupsPseudo(y,group,pair=c(1,3))
> exactTestDoubleTail(ys$y1,ys$y2,dispersion=2/3)
[1] 1.0000000 0.4486382 1.0000000 0.9390317 0.4591241
> exactTestBetaApprox(ys$y1,ys$y2,dispersion=2/3)
[1] 1.0000000 0.4492969 1.0000000 0.9421695 0.4589194
>
> y[1,3:4] <- 0
> design <- model.matrix(~group)
> fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7)
> summary(fit$coef)
(Intercept) group2 group3
Min. :-1.817 Min. :-5.0171 Min. :-0.64646
1st Qu.:-1.812 1st Qu.:-1.1565 1st Qu.:-0.13919
Median :-1.712 Median : 0.1994 Median :-0.10441
Mean :-1.625 Mean :-0.9523 Mean :-0.04217
3rd Qu.:-1.429 3rd Qu.: 0.3755 3rd Qu.:-0.04305
Max. :-1.356 Max. : 0.8374 Max. : 0.72227
>
> lrt <- glmLRT(fit,contrast=cbind(c(0,1,0),c(0,0,1)))
> topTags(lrt)
Coefficient: LR test of 2 contrasts
logFC.1 logFC.2 logCPM LR PValue FDR
1 -7.2381060 -0.0621100 17.19071 10.7712171 0.004582051 0.02291026
5 -1.6684268 -0.9326507 17.33529 1.7309951 0.420842115 0.90967967
2 1.2080938 1.0420198 18.24544 1.0496688 0.591653347 0.90967967
4 0.5416704 -0.1506381 17.57744 0.3958596 0.820427427 0.90967967
3 0.2876249 -0.2008143 18.06216 0.1893255 0.909679672 0.90967967
> design <- model.matrix(~0+group)
> fit <- glmFit(y,design,dispersion=2/3,prior.count=0.5/7)
> lrt <- glmLRT(fit,contrast=cbind(c(-1,1,0),c(0,-1,1),c(-1,0,1)))
> topTags(lrt)
Coefficient: LR test of 2 contrasts
logFC.1 logFC.2 logCPM LR PValue FDR
1 -7.2381060 7.1759960 17.19071 10.7712171 0.004582051 0.02291026
5 -1.6684268 0.7357761 17.33529 1.7309951 0.420842115 0.90967967
2 1.2080938 -0.1660740 18.24544 1.0496688 0.591653347 0.90967967
4 0.5416704 -0.6923084 17.57744 0.3958596 0.820427427 0.90967967
3 0.2876249 -0.4884392 18.06216 0.1893255 0.909679672 0.90967967
>
> # simple Good-Turing algorithm runs.
> test1<-1:9
> freq1<-c(2018046, 449721, 188933, 105668, 68379, 48190, 35709, 37710, 22280)
> goodTuring(rep(test1, freq1))
$P0
[1] 0.3814719
$proportion
[1] 8.035111e-08 2.272143e-07 4.060582e-07 5.773690e-07 7.516705e-07
[6] 9.276808e-07 1.104759e-06 1.282549e-06 1.460837e-06
$count
[1] 1 2 3 4 5 6 7 8 9
$n
[1] 2018046 449721 188933 105668 68379 48190 35709 37710 22280
$n0
[1] 0
> test2<-c(312, 14491, 16401, 65124, 129797, 323321, 366051, 368599, 405261, 604962)
> goodTuring(test2)
$P0
[1] 0
$proportion
[1] 0.0001362656 0.0063162959 0.0071487846 0.0283850925 0.0565733349
[6] 0.1409223124 0.1595465235 0.1606570896 0.1766365144 0.2636777866
$count
[1] 312 14491 16401 65124 129797 323321 366051 368599 405261 604962
$n
[1] 1 1 1 1 1 1 1 1 1 1
$n0
[1] 0
>
>
>
> proc.time()
user system elapsed
3.58 0.03 3.61
|