1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
# Estimating dispersion using weighted likelihood empirical Bayes.
estimateDisp <- function(y, ...)
UseMethod("estimateDisp")
estimateDisp.DGEList <- function(y, design=NULL, prior.df=NULL, trend.method="locfit", tagwise=TRUE, span=NULL, min.row.sum=5, grid.length=21, grid.range=c(-10,10), robust=FALSE, winsor.tail.p=c(0.05,0.1), tol=1e-06, ...)
# Yunshun Chen.
# Created 16 March 2016. Last modified 16 Oct 2019.
{
y <- validDGEList(y)
group <- y$samples$group
lib.size <- y$samples$lib.size * y$samples$norm.factors
if(is.null(design)) {
design <- y$design
} else {
y$design <- design
}
d <- estimateDisp(y=y$counts, design=design, group=group, lib.size=lib.size, offset=getOffset(y), prior.df=prior.df, trend.method=trend.method, tagwise=tagwise, span=span, min.row.sum=min.row.sum, grid.length=grid.length, grid.range=grid.range, robust=robust, winsor.tail.p=winsor.tail.p, tol=tol, weights=y$weights, ...)
y$common.dispersion <- d$common.dispersion
y$trended.dispersion <- d$trended.dispersion
if(tagwise) y$tagwise.dispersion <- d$tagwise.dispersion
y$AveLogCPM <- aveLogCPM(y)
y$trend.method <- trend.method
y$prior.df <- d$prior.df
y$prior.n <- d$prior.n
y$span <- d$span
y
}
estimateDisp.SummarizedExperiment <- function(y, design=NULL, prior.df=NULL, trend.method="locfit", tagwise=TRUE, span=NULL, min.row.sum=5, grid.length=21, grid.range=c(-10,10), robust=FALSE, winsor.tail.p=c(0.05,0.1), tol=1e-06, ...)
# Yunshun Chen.
# Created 19 March 2020. Last modified 19 March 2020.
{
y <- SE2DGEList(y)
y <- estimateDisp.DGEList(y, design=design, prior.df=prior.df, trend.method=trend.method, tagwise=tagwise, span=span, min.row.sum=min.row.sum, grid.length=grid.length, grid.range=grid.range, robust=robust, winsor.tail.p=winsor.tail.p, tol=tol, ...)
y
}
estimateDisp.default <- function(y, design=NULL, group=NULL, lib.size=NULL, offset=NULL, prior.df=NULL, trend.method="locfit", tagwise=TRUE, span=NULL, min.row.sum=5, grid.length=21, grid.range=c(-10,10), robust=FALSE, winsor.tail.p=c(0.05,0.1), tol=1e-06, weights=NULL, ...)
# Estimate common, trended and tagwise dispersions
# Use GLM approach if design matrix is given and classic approach otherwise.
# A matrix of likelihoods is computed for each gene at a set of dispersion grid points
# and WLEB() is called for weighted likelihood empirical Bayes.
# Yunshun Chen, Aaron Lun, Gordon Smyth.
# Created July 2012. Last modified 16 Oct 2019.
{
# Check y
y <- as.matrix(y)
ntags <- nrow(y)
if(ntags==0) return(list(span=span, prior.df=prior.df, prior.n=prior.n))
nlibs <- ncol(y)
# Check trend.method
trend.method <- match.arg(trend.method, c("none", "loess", "locfit", "movingave", "locfit.mixed"))
# Check group
if(is.null(group)) group <- rep(1, nlibs)
if(length(group)!=nlibs) stop("Incorrect length of group.")
group <- dropEmptyLevels(group)
# Check lib.size
if(is.null(lib.size)) lib.size <- colSums(y)
if(length(lib.size)!=nlibs) stop("Incorrect length of lib.size.")
# Check offset
offset <- .compressOffsets(y, lib.size=lib.size, offset=offset)
# Check weights
weights <- .compressWeights(y, weights)
# Check for genes with small counts
sel <- rowSums(y) >= min.row.sum
sely <- .subsetMatrixWithoutCopying(y, i=sel)
seloffset <- .subsetMatrixWithoutCopying(offset, i=sel)
selweights <- .subsetMatrixWithoutCopying(weights, i=sel)
# Spline points
spline.pts <- seq(from=grid.range[1], to=grid.range[2], length.out=grid.length)
spline.disp <- 0.1 * 2^spline.pts
grid.vals <- spline.disp/(1+spline.disp)
l0 <- matrix(0, sum(sel), grid.length)
# Classic edgeR
if(is.null(design)){
# One way
message("Using classic mode.")
if(length(levels(group))==1)
design <- matrix(1, nlibs, 1)
else
design <- model.matrix(~group)
if( all(tabulate(group)<=1) ) {
warning("There is no replication, setting dispersion to NA.")
return(list(common.dispersion=NA_real_, trended.dispersion=NA_real_, tagwise.dispersion=NA_real_))
}
eq <- equalizeLibSizes(y, group=group, dispersion=0.01, lib.size=lib.size)
y.pseudo <- eq$pseudo.counts[sel, , drop=FALSE]
y.split <- splitIntoGroups(y.pseudo, group=group)
delta <- optimize(commonCondLogLikDerDelta, interval=c(1e-4,100/(100+1)), tol=tol, maximum=TRUE, y=y.split, der=0)
delta <- delta$maximum
disp <- delta/(1-delta)
eq <- equalizeLibSizes(y, group=group, dispersion=disp, lib.size=lib.size)
y.pseudo <- eq$pseudo.counts[sel, , drop=FALSE]
y.split <- splitIntoGroups(y.pseudo, group=group)
for(j in 1:grid.length) for(i in 1:length(y.split))
l0[,j] <- condLogLikDerDelta(y.split[[i]], grid.vals[j], der=0) + l0[,j]
}
# GLM edgeR
else {
design <- as.matrix(design)
if(ncol(design) >= nlibs) {
warning("No residual df: setting dispersion to NA")
return(list(common.dispersion=NA_real_, trended.dispersion=NA_real_, tagwise.dispersion=NA_real_))
}
# Identify which observations have means of zero (weights aren't needed here).
glmfit <- glmFit(sely, design, offset=seloffset, dispersion=0.05, prior.count=0)
zerofit <- (glmfit$counts < 1e-4 & glmfit$fitted.values < 1e-4)
by.group <- .comboGroups(zerofit)
for (subg in by.group) {
cur.nzero <- !zerofit[subg[1],]
if (!any(cur.nzero)) { next }
# Removing samples with zero means from design, to avoid attempts to converge to -Inf.
if (all(cur.nzero)) {
redesign <- design
} else {
redesign <- design[cur.nzero,,drop=FALSE]
QR <- qr(redesign)
redesign <- redesign[,QR$pivot[1:QR$rank],drop=FALSE]
if (nrow(redesign) == ncol(redesign)) { next }
}
cury <- .subsetMatrixWithoutCopying(sely, i=subg, j=cur.nzero)
curo <- .subsetMatrixWithoutCopying(seloffset, i=subg, j=cur.nzero)
curw <- .subsetMatrixWithoutCopying(selweights, i=subg, j=cur.nzero)
# Using the last fit to hot-start the next fit
last.beta <- NULL
for(i in seq_len(grid.length)) {
out <- adjustedProfileLik(spline.disp[i], y=cury, design=redesign,
offset=curo, weights=curw, start=last.beta, get.coef=TRUE)
l0[subg,i] <- out$apl
last.beta <- out$beta
}
}
}
# Calculate common dispersion
overall <- maximizeInterpolant(spline.pts, matrix(colSums(l0), nrow=1))
common.dispersion <- 0.1 * 2^overall
# Allow dispersion trend?
if(trend.method!="none"){
AveLogCPM <- aveLogCPM(y, lib.size=lib.size, dispersion=common.dispersion, weights=weights)
out.1 <- WLEB(theta=spline.pts, loglik=l0, covariate=AveLogCPM[sel], trend.method=trend.method,
span=span, overall=FALSE, individual=FALSE, m0.out=TRUE)
span <- out.1$span
m0 <- out.1$shared.loglik
disp.trend <- 0.1 * 2^out.1$trend
trended.dispersion <- rep( disp.trend[which.min(AveLogCPM[sel])], ntags )
trended.dispersion[sel] <- disp.trend
} else {
AveLogCPM <- NULL
m0 <- matrix(colMeans(l0), ntags, length(spline.pts), byrow=TRUE)
disp.trend <- common.dispersion
trended.dispersion <- NULL
}
# Are tagwise dispersions required?
if(!tagwise) return(list(common.dispersion=common.dispersion, trended.dispersion=trended.dispersion))
# Calculate prior.df
if(is.null(prior.df)){
glmfit <- glmFit(sely, offset=seloffset, weights=selweights, design=design, dispersion=disp.trend, prior.count=0)
# Residual deviances
df.residual <- glmfit$df.residual
# Adjust df.residual for fitted values at zero
zerofit <- (glmfit$counts < 1e-4 & glmfit$fitted.values < 1e-4)
df.residual <- .residDF(zerofit, design)
# Empirical Bayes squeezing of the quasi-likelihood variance factors
s2 <- glmfit$deviance / df.residual
s2[df.residual==0] <- 0
s2 <- pmax(s2,0)
s2.fit <- squeezeVar(s2, df=df.residual, covariate=AveLogCPM[sel], robust=robust, winsor.tail.p=winsor.tail.p)
prior.df <- s2.fit$df.prior
}
ncoefs <- ncol(design)
prior.n <- prior.df/(nlibs-ncoefs)
# Initiate tagwise dispersions
if(trend.method!="none")
tagwise.dispersion <- trended.dispersion
else
tagwise.dispersion <- rep(common.dispersion, ntags)
# Checking if the shrinkage is near-infinite.
too.large <- prior.n > 1e6
if (!all(too.large)) {
temp.n <- prior.n
if (any(too.large)) {
temp.n[too.large] <- 1e6
}
# Estimating tagwise dispersions
out.2 <- WLEB(theta=spline.pts, loglik=l0, prior.n=temp.n, covariate=AveLogCPM[sel],
trend.method=trend.method, span=span, overall=FALSE, trend=FALSE, m0=m0)
if (!robust) {
tagwise.dispersion[sel] <- 0.1 * 2^out.2$individual
} else {
tagwise.dispersion[sel][!too.large] <- 0.1 * 2^out.2$individual[!too.large]
}
}
if(robust) {
temp.df <- prior.df
temp.n <- prior.n
prior.df <- prior.n <- rep(Inf, ntags)
prior.df[sel] <- temp.df
prior.n[sel] <- temp.n
}
list(common.dispersion=common.dispersion, trended.dispersion=trended.dispersion, tagwise.dispersion=tagwise.dispersion, span=span, prior.df=prior.df, prior.n=prior.n)
}
WLEB <- function(theta, loglik, prior.n=5, covariate=NULL, trend.method="locfit", span=NULL,
overall=TRUE, trend=TRUE, individual=TRUE, m0=NULL, m0.out=FALSE)
# Weighted likelihood empirical Bayes for estimating a parameter vector theta
# given log-likelihood values on a grid of theta values
# Yunshun Chen, Gordon Smyth
# Created July 2012. Last modified 16 Oct 2019.
{
# Check loglik
loglik <- as.matrix(loglik)
ntheta <- ncol(loglik)
ntags <- nrow(loglik)
# Check covariate and trend
if(is.null(covariate))
trend.method <- "none"
else
trend.method <- match.arg(trend.method, c("none", "loess", "locfit", "movingave", "locfit.mixed"))
# Set span
if(is.null(span)) if(ntags<=50) span <- 1 else span <- 0.25+0.75*(50/ntags)^0.5
# Output
out <- list()
out$span <- span
# overall prior
if(overall)
out$overall <- maximizeInterpolant(theta, matrix(colSums(loglik), nrow=1))
# trended prior
if(is.null(m0))
m0 <- switch(trend.method,
"movingave" = {
o <- order(covariate)
oo <- order(o)
movingAverageByCol(loglik[o,], width=floor(span*ntags))[oo,]
},
"loess" = loessByCol(loglik, covariate, span=span)$fitted.values,
"locfit" = locfitByCol(loglik, covariate, span=span, degree=0),
"locfit.mixed" = {
deg0 <- locfitByCol(loglik, covariate, span=span, degree=0)
deg1 <- locfitByCol(loglik, covariate, span=span, degree=1)
r <- range(covariate)
w <- pbeta((covariate-r[1])/(r[2]-r[1]),shape1=2,shape2=2)
w*deg0 + (1-w)*deg1
},
"none" = matrix(colMeans(loglik), ntags, length(theta), byrow=TRUE)
)
# make sure each row of m0 is unimodal
if(trend.method=="locfit.mixed"){
for(i in ncol(m0):3){
diff1_m0 <- m0[,i] - m0[,i-1]
diff2_m0 <- m0[,i-1] - m0[,i-2]
k <- which(diff1_m0>0 & diff2_m0<0)
m0[k,1:(i-2)] <- m0[k,(i-1)]
}
}
if(trend)
out$trend <- maximizeInterpolant(theta, m0)
# weighted empirical Bayes posterior estimates
if(individual){
stopifnot(all(is.finite(prior.n)))
l0a <- loglik + prior.n*m0
out$individual <- maximizeInterpolant(theta, l0a)
}
if(m0.out) out$shared.loglik <- m0
out
}
.subsetMatrixWithoutCopying <- function(x, i, j)
# This will attempt to subset the matrix without any copying if
# it detects that 'i' and 'j' don't modify the ordering of the matrix.
# This reduces the memory footprint for large matrices.
#
# written by Aaron Lun
# created 29 September 2016
# last modified 16 December 2018
{
isokay <- TRUE
if (!missing(i)) {
# Most flexible way of handling different types of subset vectors;
# try it out and see if it gives the same results.
example <- cbind(seq_len(nrow(x)))
rownames(example) <- rownames(x)
if (!identical(example, example[i,,drop=FALSE])) isokay <- FALSE
}
if (!missing(j)) {
example <- rbind(seq_len(ncol(x)))
colnames(example) <- colnames(x)
if (!identical(example, example[,j,drop=FALSE])) isokay <- FALSE
}
if (isokay) {
# Avoids copying if no modification incurred.
return(x)
} else if (!missing(i) && !missing(j)) {
return(x[i,j,drop=FALSE])
} else if (!missing(i)) {
return(x[i,,drop=FALSE])
} else {
return(x[,j,drop=FALSE])
}
}
|