1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
\name{nbinomDeviance}
\alias{nbinomDeviance}
\title{Negative Binomial Deviance}
\description{
Fit the same log-link negative binomial or Poisson generalized linear model (GLM) to each row of a matrix of counts.
}
\usage{
nbinomDeviance(y, mean, dispersion=0, weights=NULL)
}
\arguments{
\item{y}{numeric matrix containing the negative binomial counts, with rows for genes and columns for libraries. A vector will be treated as a matrix with one row.}
\item{mean}{numeric matrix of expected values, of same dimension as \code{y}. A vector will be treated as a matrix with one row.}
\item{dispersion}{numeric vector or matrix of negative binomial dispersions, as for \code{\link{glmFit}}.
Can be a scalar, a vector of length equal to \code{nrow(y)}, or a matrix of same dimensions as \code{y}.}
\item{weights}{numeric vector or matrix of non-negative weights, as for \code{\link{glmFit}}.
Can be a scalar, a vector of length equal to \code{ncol(y)}, or a matrix of same dimensions as \code{y}.}
}
\details{
Computes the total residual deviance for each row of \code{y}, i.e., weighted row sums of the unit deviances.
Care is taken to ensure accurate computation in limiting cases when the dispersion is near zero or \code{mean*dispersion} is very large.
}
\value{
\code{nbinomDeviance} returns a numeric vector of length equal to the number of rows of \code{y}.
}
\references{
Dunn PK, Smyth GK (2018).
\emph{Generalized linear models with examples in R}.
Springer, New York, NY.
\doi{10.1007/978-1-4419-0118-7}
Jorgensen B (2013).
Generalized linear models.
\emph{Encyclopedia of Environmetrics} 3, Wiley.
\doi{10.1002/9780470057339.vag010.pub2}
McCarthy DJ, Chen Y, Smyth GK (2012).
Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation.
\emph{Nucleic Acids Research} 40, 4288-4297.
\doi{10.1093/nar/gks042}
}
\author{Gordon Smyth, Yunshun Chen, Aaron Lun. C++ code by Aaron Lun.}
\seealso{
\code{\link{nbinomUnitDeviance}}
}
\examples{
y <- matrix(1:6,3,2)
mu <- matrix(3,3,2)
nbinomDeviance(y,mu,dispersion=0.2)
}
\concept{Model fit}
|