1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
|
#' @include Methods.R
#' @title Map protein-relative coordinates to positions within the transcript
#'
#' @description
#'
#' `proteinToTranscript` maps protein-relative coordinates to positions within
#' the encoding transcript. Note that the returned positions are relative to
#' the complete transcript length, which includes the 5' UTR.
#'
#' Similar to the [proteinToGenome()] function, `proteinToTranscript` compares
#' for each protein whether the length of its sequence matches the length of
#' the encoding CDS and throws a warning if that is not the case. Incomplete
#' 3' or 5' CDS of the encoding transcript are the most common reasons for a
#' mismatch between protein and transcript sequences.
#'
#' @details
#'
#' Protein identifiers (supported are Ensembl protein IDs or Uniprot IDs) can
#' be passed to the function as `names` of the `x` `IRanges` object, or
#' alternatively in any one of the metadata columns (`mcols`) of `x`.
#'
#' @note
#'
#' While mapping of Ensembl protein IDs to Ensembl transcript IDs is 1:1, a
#' single Uniprot identifier can be annotated to several Ensembl protein IDs.
#' `proteinToTranscript` calculates in such cases transcript-relative
#' coordinates for each annotated Ensembl protein.
#'
#' Mapping using Uniprot identifiers needs also additional internal checks that
#' can have a significant impact on the performance of the function. It is thus
#' strongly suggested to first identify the Ensembl protein identifiers for the
#' list of input Uniprot identifiers (e.g. using the [proteins()] function and
#' use these as input for the mapping function.
#'
#' @inheritParams proteinToGenome
#'
#' @return
#'
#' `IRangesList`, each element being the mapping results for one of the input
#' ranges in `x`. Each element is a `IRanges` object with the positions within
#' the encoding transcript (relative to the start of the transcript, which
#' includes the 5' UTR). The transcript ID is reported as the name of each
#' `IRanges`. The `IRanges` can be of length > 1 if the provided
#' protein identifier is annotated to more than one Ensembl protein ID (which
#' can be the case if Uniprot IDs are provided). If the coordinates can not be
#' mapped (because the protein identifier is unknown to the database) an
#' `IRanges` with negative coordinates is returned.
#'
#' The following metadata columns are available in each `IRanges` in the result:
#' + `"protein_id"`: the ID of the Ensembl protein for which the within-protein
#' coordinates were mapped to the genome.
#' + `"tx_id"`: the Ensembl transcript ID of the encoding transcript.
#' + `"cds_ok"`: contains `TRUE` if the length of the CDS matches the length
#' of the amino acid sequence and `FALSE` otherwise.
#' + `"protein_start"`: the within-protein sequence start coordinate of the
#' mapping.
#' + `"protein_end"`: the within-protein sequence end coordinate of the mapping.
#'
#' @family coordinate mapping functions
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @examples
#'
#' library(EnsDb.Hsapiens.v86)
#' ## Restrict all further queries to chromosome x to speed up the examples
#' edbx <- filter(EnsDb.Hsapiens.v86, filter = ~ seq_name == "X")
#'
#' ## Define an IRange with protein-relative coordinates within a protein for
#' ## the gene SYP
#' syp <- IRanges(start = 4, end = 17)
#' names(syp) <- "ENSP00000418169"
#' res <- proteinToTranscript(syp, edbx)
#' res
#' ## Positions 4 to 17 within the protein span are encoded by the region
#' ## from nt 23 to 64.
#'
#' ## Perform the mapping for multiple proteins identified by their Uniprot
#' ## IDs.
#' ids <- c("O15266", "Q9HBJ8", "unexistant")
#' prngs <- IRanges(start = c(13, 43, 100), end = c(21, 80, 100))
#' names(prngs) <- ids
#'
#' res <- proteinToTranscript(prngs, edbx, idType = "uniprot_id")
#'
#' ## The result is a list, same length as the input object
#' length(res)
#' names(res)
#'
#' ## No protein/encoding transcript could be found for the last one
#' res[[3]]
#'
#' ## The first protein could be mapped to multiple Ensembl proteins. The
#' ## region within all transcripts encoding the region in the protein are
#' ## returned
#' res[[1]]
#'
#' ## The result for the region within the second protein
#' res[[2]]
proteinToTranscript <- function(x, db, id = "name",
idType = "protein_id") {
if (missing(x) || !is(x, "IRanges"))
stop("Argument 'x' is required and has to be an 'IRanges' object")
if (missing(db) || !is(db, "EnsDb"))
stop("Argument 'db' is required and has to be an 'EnsDb' object")
coords_cds <- .proteinCoordsToTx(x)
## 1) retrieve CDS for each protein
message("Fetching CDS for ", length(x), " proteins ... ",
appendLF = FALSE)
cds_genome <- .cds_for_id_range(db, x, id = id, idType = idType)
miss <- lengths(cds_genome) == 0
if (any(miss))
warning("No CDS found for: ", paste0(names(cds_genome)[miss],
collapse = ", "))
message(sum(!miss), " found")
## 2) ensure that the CDS matches the AA sequence length
message("Checking CDS and protein sequence lengths ... ", appendLF = FALSE)
cds_genome <- .cds_matching_protein(db, cds_genome)
are_ok <- unlist(lapply(cds_genome, function(z) {
if (is(z, "GRangesList"))
all(z[[1]]$cds_ok)
else NA
}))
are_ok <- are_ok[!is.na(are_ok)]
## We've got now a list of GRanges
message(sum(are_ok), "/", length(are_ok), " OK")
## Get for each transcript it's 5' UTR and add its width to the coords_cds
tx_ids <- unique(unlist(lapply(cds_genome, names), use.names = FALSE))
if (length(tx_ids)) {
five_utr <- fiveUTRsByTranscript(db, filter = TxIdFilter(tx_ids))
## Calculate 5' widths for these
five_width <- sum(width(five_utr))
}
as(mapply(
cds_genome, as(coords_cds, "IRangesList"), split(x, 1:length(x)),
FUN = function(gnm, cds, prt) {
if (is.null(gnm)) {
## Define the metadata columns
mc <- DataFrame(protein_id = NA_character_,
tx_id = NA_character_,
cds_ok = NA,
protein_start = start(prt),
protein_end = end(prt))
if (idType == "uniprot_id")
mc$uniprot_id <- names(prt)
else mc$protein_id <- names(prt)
ir <- IRanges(start = -1, width = 1)
mcols(ir) <- mc
ir
} else {
ids <- names(gnm)
res <- IRanges(start = start(cds) + five_width[ids],
end = end(cds) + five_width[ids],
names = ids)
## Populate mcols
mc <- DataFrame(protein_id = unlist(lapply(gnm,
function(z)
z$protein_id[1])),
tx_id = ids,
cds_ok = gnm[[1]]$cds_ok[1],
protein_start = start(prt),
protein_end = end(prt)
)
if (idType == "uniprot_id")
mc$uniprot_id <- names(prt)
mcols(res) <- mc
res
}
}), "IRangesList")
}
#' @title Map within-protein coordinates to genomic coordinates
#'
#' @description
#'
#' `proteinToGenome` maps protein-relative coordinates to genomic coordinates
#' based on the genomic coordinates of the CDS of the encoding transcript. The
#' encoding transcript is identified using protein-to-transcript annotations
#' (and eventually Uniprot to Ensembl protein identifier mappings) from the
#' submitted `EnsDb` object (and thus based on annotations from Ensembl).
#'
#' Not all coding regions for protein coding transcripts are complete, and the
#' function thus checks also if the length of the coding region matches the
#' length of the protein sequence and throws a warning if that is not the case.
#'
#' The genomic coordinates for the within-protein coordinates, the Ensembl
#' protein ID, the ID of the encoding transcript and the within protein start
#' and end coordinates are reported for each input range.
#'
#' @details
#'
#' Protein identifiers (supported are Ensembl protein IDs or Uniprot IDs) can
#' be passed to the function as `names` of the `x` `IRanges` object, or
#' alternatively in any one of the metadata columns (`mcols`) of `x`.
#'
#' @note
#'
#' While the mapping for Ensembl protein IDs to encoding transcripts (and
#' thus CDS) is 1:1, the mapping between Uniprot identifiers and encoding
#' transcripts (which is based on Ensembl annotations) can be one to many. In
#' such cases `proteinToGenome` calculates genomic coordinates for
#' within-protein coordinates for all of the annotated Ensembl proteins and
#' returns all of them. See below for examples.
#'
#' Mapping using Uniprot identifiers needs also additional internal checks that
#' have a significant impact on the performance of the function. It is thus
#' strongly suggested to first identify the Ensembl protein identifiers for the
#' list of input Uniprot identifiers (e.g. using the [proteins()] function and
#' use these as input for the mapping function.
#'
#' A warning is thrown for proteins which sequence does not match the coding
#' sequence length of any encoding transcripts. For such proteins/transcripts
#' a `FALSE` is reported in the respective `"cds_ok"` metadata column.
#' The most common reason for such discrepancies are incomplete 3' or 5' ends
#' of the CDS. The positions within the protein might not be correclty
#' mapped to the genome in such cases and it might be required to check
#' the mapping manually in the Ensembl genome browser.
#'
#' @param x `IRanges` with the coordinates within the protein(s). The
#' object has also to provide some means to identify the protein (see
#' details).
#'
#' @param db `EnsDb` object to be used to retrieve genomic coordinates of
#' encoding transcripts.
#'
#' @param id `character(1)` specifying where the protein identifier can be
#' found. Has to be either `"name"` or one of `colnames(mcols(prng))`.
#'
#' @param idType `character(1)` defining what type of IDs are provided. Has to
#' be one of `"protein_id"` (default), `"uniprot_id"` or `"tx_id"`.
#'
#' @return
#'
#' `list`, each element being the mapping results for one of the input
#' ranges in `x` and names being the IDs used for the mapping. Each
#' element can be either a:
#' + `GRanges` object with the genomic coordinates calculated on the
#' protein-relative coordinates for the respective Ensembl protein (stored in
#' the `"protein_id"` metadata column.
#' + `GRangesList` object, if the provided protein identifier in `x` was
#' mapped to several Ensembl protein IDs (e.g. if Uniprot identifiers were
#' used). Each element in this `GRangesList` is a `GRanges` with the genomic
#' coordinates calculated for the protein-relative coordinates from the
#' respective Ensembl protein ID.
#'
#' The following metadata columns are available in each `GRanges` in the result:
#' + `"protein_id"`: the ID of the Ensembl protein for which the within-protein
#' coordinates were mapped to the genome.
#' + `"tx_id"`: the Ensembl transcript ID of the encoding transcript.
#' + `"exon_id"`: ID of the exons that have overlapping genomic coordinates.
#' + `"exon_rank"`: the rank/index of the exon within the encoding transcript.
#' + `"cds_ok"`: contains `TRUE` if the length of the CDS matches the length
#' of the amino acid sequence and `FALSE` otherwise.
#' + `"protein_start"`: the within-protein sequence start coordinate of the
#' mapping.
#' + `"protein_end"`: the within-protein sequence end coordinate of the mapping.
#'
#' Genomic coordinates are returned ordered by the exon index within the
#' transcript.
#'
#' @family coordinate mapping functions
#'
#' @author Johannes Rainer based on initial code from Laurent Gatto and
#' Sebastian Gibb
#'
#' @md
#'
#' @examples
#'
#' library(EnsDb.Hsapiens.v86)
#' ## Restrict all further queries to chromosome x to speed up the examples
#' edbx <- filter(EnsDb.Hsapiens.v86, filter = ~ seq_name == "X")
#'
#' ## Define an IRange with protein-relative coordinates within a protein for
#' ## the gene SYP
#' syp <- IRanges(start = 4, end = 17)
#' names(syp) <- "ENSP00000418169"
#' res <- proteinToGenome(syp, edbx)
#' res
#' ## Positions 4 to 17 within the protein span two exons of the encoding
#' ## transcript.
#'
#' ## Perform the mapping for multiple proteins identified by their Uniprot
#' ## IDs.
#' ids <- c("O15266", "Q9HBJ8", "unexistant")
#' prngs <- IRanges(start = c(13, 43, 100), end = c(21, 80, 100))
#' names(prngs) <- ids
#'
#' res <- proteinToGenome(prngs, edbx, idType = "uniprot_id")
#'
#' ## The result is a list, same length as the input object
#' length(res)
#' names(res)
#'
#' ## No protein/encoding transcript could be found for the last one
#' res[[3]]
#'
#' ## The first protein could be mapped to multiple Ensembl proteins. The
#' ## mapping result using all of their encoding transcripts are returned
#' res[[1]]
#'
#' ## The coordinates within the second protein span two exons
#' res[[2]]
proteinToGenome <- function(x, db, id = "name", idType = "protein_id") {
if (missing(x) || !is(x, "IRanges"))
stop("Argument 'x' is required and has to be an 'IRanges' object")
if (missing(db) || !is(db, "EnsDb"))
stop("Argument 'db' is required and has to be an 'EnsDb' object")
coords_cds <- .proteinCoordsToTx(x)
## 1) retrieve CDS for each protein
message("Fetching CDS for ", length(x), " proteins ... ",
appendLF = FALSE)
cds_genome <- .cds_for_id_range(db, x, id = id, idType = idType)
miss <- lengths(cds_genome) == 0
if (any(miss))
warning("No CDS found for: ", paste0(names(cds_genome)[miss],
collapse = ", "))
message(sum(!miss), " found")
## 2) ensure that the CDS matches the AA sequence length
message("Checking CDS and protein sequence lengths ... ", appendLF = FALSE)
cds_genome <- .cds_matching_protein(db, cds_genome)
are_ok <- unlist(lapply(cds_genome, function(z) {
if (is(z, "GRangesList"))
all(z[[1]]$cds_ok)
else NA
}))
are_ok <- are_ok[!is.na(are_ok)]
## We've got now a list of GRanges
message(sum(are_ok), "/", length(are_ok), " OK")
## Perform the mapping for each input range with each mapped cds
res <- mapply(
cds_genome, as(coords_cds, "IRangesList"), as(x, "IRangesList"),
FUN = function(gnm, cds, prt) {
if (is.null(gnm)) {
GRanges()
} else {
## Unlist because we'd like to have a GRanges here. Will split
## again later.
maps <- unlist(.to_genome(gnm, cds))
## Don't want to have GRanges names!
names(maps) <- NULL
mcols(maps)$protein_start <- start(prt)
mcols(maps)$protein_end <- end(prt)
maps[order(maps$exon_rank)]
}
})
## Split each element again, if there are more than one protein_id. Names
## of the elements are then the protein_id.
lapply(res, function(z) {
if (length(unique(z$protein_id)) > 1)
split(z, f = z$protein_id)
else z
})
}
#' @description Convert within-protein coordinates to transcript (CDS) relative
#' coordinates.
#'
#' @param x `IRanges` object with coordinates within a protein sequence.
#'
#' @return `IRanges` with the coordinates within the coding region (!) of the
#' encoding transcript.
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @noRd
#'
#' @examples
#'
#' prt <- IRanges(start = 23, end = 27)
#' .proteinCoordsToTx(prt)
.proteinCoordsToTx <- function(x) {
end(x) <- end(x) * 3
start(x) <- 1 + (start(x) - 1) * 3
x
}
#' @description
#'
#' Fetch the CDS for all transcripts encoding the specified protein.
#'
#' @param x `EnsDb` object.
#'
#' @param id `character` with the protein ID(s).
#'
#' @param idType `character(1)` defining what type of IDs are provided. Has to
#' be one of `"protein_id"` (default), `"uniprot_id"` or `"tx_id"`.
#'
#' @return a `list` with the CDS of the encoding transcript(s) for each provided
#' id (as a `GRangesList`). Names of the `list` are the ids, if no
#' transcript was found `NULL` is returned.
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @noRd
.cds_for_id <- function(x, id, idType = "protein_id") {
cds <- lapply(id,
FUN = function(x_id) {
suppressWarnings(
res <-
cdsBy(x, by = "tx",
filter = .filter_for_idType(x_id, idType),
columns = unique(c(idType,
"tx_id",
"protein_id")))
)
if (length(res) == 0)
warning("No CDS found for '", x_id, "'",
call. = FALSE)
res
})
names(cds) <- id
cds
}
#' @description Fetch the CDS for all transcripts encoding the specified protein.
#'
#' @note
#'
#' Use one query to fetch CDS for all (unique) input IDs. If input IDs are
#' Uniprot identifiers we have to perform additional checks and data
#' re-organizations because one transript (and thus CDS) can be associated
#' with multiple Uniprot identifiers.
#'
#' @param x `EnsDb` object.
#'
#' @param id `character` with the protein ID(s).
#'
#' @param idType `character(1)` defining what type of IDs are provided. Has to
#' be one of `"protein_id"` (default), `"uniprot_id"` or `"tx_id"`.
#'
#' @return a `list` with the CDS of the encoding transcript(s) for each provided
#' id (as a `GRangesList`). Names of the `list` are the ids, if no
#' transcript was found `NULL` is returned.
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @noRd
.cds_for_id2 <- function(x, id, idType = "protein_id") {
if (idType != "tx_id") {
map <- transcripts(x, filter = .filter_for_idType(unique(id), idType),
columns = c("tx_id", idType), order.by = "tx_id",
return.type = "data.frame")
tx_id <- split(map$tx_id, map[, idType])
} else {
tx_id <- id
split(tx_id, id)
}
if (length(tx_id)) {
suppressWarnings(
cds <- cdsBy(
x, columns = unique(c(idType, "tx_id", "protein_id")), by = "tx",
filter = TxIdFilter(unique(unlist(tx_id, use.names = FALSE))))
)
if (length(cds)) {
if (idType == "uniprot_id") {
## Additional (in)sanity checks for Uniprot identifiers
## This has a significant impact on performance, but otherwise
## we end up with duplicated transcript entries!
tmp <- unlist(cds)
tmp <- as.list(split(unname(tmp), tmp$uniprot_id))
cds <- lapply(tmp, function(z) split(z, z$tx_id))
} else
cds <- lapply(tx_id, function(z) cds[z])
}
else cds <- list()
} else cds <- list()
cds <- cds[id]
names(cds) <- id # to add also names for elements not found
cds
}
#' @description
#'
#' Uses .cds_for_id to fetch CDS for protein identifiers and in addition
#' checks that the CDS has a length that fits the range.
#'
#' @param x `EndDb` object.
#'
#' @param range The `IRange` with the position within protein.
#'
#' @param id `character(1)` specifying where the protein identifier can be found.
#' Has to be either `"name"` or one of `colnames(mcols(prng))`.
#'
#' @param idType `character(1)` defining what type of IDs are provided. Has to
#' be one of `"protein_id"` (default), `"uniprot_id"` or `"tx_id"`.
#'
#' @return `list` of `GRangesList`.
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @noRd
.cds_for_id_range <- function(x, range, id = "name", idType = "protein_id") {
idType <- match.arg(idType, c("protein_id", "uniprot_id", "tx_id"))
id <- match.arg(id, c("name", colnames(mcols(range))))
if (id == "name")
ids <- names(range)
else ids <- mcols(range)[, id]
cds <- .cds_for_id2(x, ids, idType = idType)
## check returned CDS if their width matches the provided protein ranges
mapply(cds, end(range) * 3,
FUN = function(x, x_end) {
if (!is.null(x))
x[sum(width(x)) >= x_end]
})
}
#' @description
#'
#' Fetches the protein sequence using the provided `"protein_id"` in `cds` and
#' checks whether the cds lenghts match the protein sequence. The
#' function returns all CDS for each protein/transcript that have the correct
#' length) and throws a warning if none of the specified CDS matches the
#' protein sequence. In the latter case a single CDS (the one with the CDS
#' length closest to the expected length). Whether a CDS has the expected length
#' or not is also reported in the metadata column `"cds_ok"`.
#'
#' @details
#'
#' Mismatch between the CDS and the AA sequence are in most instances caused by
#' incomplete (3' or 5') CDS sequences.
#'
#' @param x `EnsDb` object.
#'
#' @param cds `GRangesList`
#'
#' @return `list` of `GRangesList`s with one list element per input protein,
#' and the `GRangesList` containing the CDS of all matching (or one not
#' matching) transcripts.
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @noRd
.cds_matching_protein <- function(x, cds) {
## Fetch the protein sequences, all in one go.
## Loop through the cds
prot_ids <- unique(unlist(lapply(cds, function(z) {
lapply(z, function(y) y$protein_id)
}), use.names = FALSE))
if (length(prot_ids) == 0)
return(lapply(cds, function(z) NULL))
prot_seqs <- proteins(x, filter = ProteinIdFilter(prot_ids),
columns = c("protein_id", "protein_sequence"))
## Calculate the expected CDS length (add +3 to add the stop codon).
exp_cds_len <- nchar(prot_seqs$protein_sequence) * 3 + 3
names(exp_cds_len) <- prot_seqs$protein_id
mapply(cds, names(cds), FUN = function(z, nm) {
if (!is.null(z)) {
cds_lens <- sum(width(z))
prt_ids <- unlist(lapply(z, function(y) unique(y$protein_id)))
diffs <- cds_lens - exp_cds_len[prt_ids]
## Return all for which diff is 0, or otherwise the one with the
## smallest diff.
if (any(diffs == 0)) {
z <- lapply(z, function(grng) {
mcols(grng)$cds_ok <- TRUE
grng
})
GRangesList(z[diffs == 0])
} else {
warning("Could not find a CDS whith the expected length for ",
"protein: '", nm, "'. The returned genomic ",
"coordinates might thus not be correct for this ",
"protein.", call. = FALSE)
## Alternatively we could align the RNA and AA sequences and
## trim the protein sequence...
z <- lapply(z, function(grng) {
mcols(grng)$cds_ok <- FALSE
grng
})
GRangesList(z[which.min(abs(diffs))])
}
}
})
}
#' @description
#'
#' Function to map coordinates within a CDS to genomic coordinates, based on the
#' genomic coordinates of the exons of the CDS. See examples below.
#'
#' @note
#'
#' While designed for cds-relative coordinates, the function should also
#' work for `g_coords` that represent the exons of a transcript and
#' `cds_coords` being transcript-relative.
#'
#' @param g_coords `GRanges` with the exons encoding the CDS. These have to be
#' provided in the correct order (i.e. first element being the first exon
#' etc, also for genes on the reverse strand!). If `g_coords` is a
#' `GRangesList`, `cds_coords` is mapped to genomic coordinates using each
#' `GRanges` in the `GRangesList`.
#'
#' @param cds_coords `IRanges` with CDS-relative coordinates.
#'
#' @return A `GRanges` with the result from the within-cds coordinate mapping
#' to the genome.
#'
#' @md
#'
#' @noRd
#'
#' @author Johannes Rainer based on code from Laurent Gatto and Sebastian Gibb
#'
#' @examples
#'
#' g_coords <- GRanges("1",
#' ranges = IRanges(start = c(3, 8, 15, 19), end = c(5, 12, 16, 21)),
#' strand = "+")
#'
#' cds_coords <- IRanges(start = 5, end = 12)
#' ## Expect: 9:20
#'
#' .to_genome(g_coords, cds_coords)
#'
#' ## Reverse strand example
#' g_c <- GRanges("1", IRanges(start = c(28, 21, 16, 10, 3),
#' end = c(30, 25, 17, 12, 6)), strand = "-")
#'
#' c_c <- IRanges(start = 2, end = 2)
#' ## Expect: 29:29
#' .to_genome(g_c, c_c)
#'
#' c_c <- IRanges(start = 8, end = 16)
#' ## Expect: 4:6, 10:12, 16:17, 21:21
#' .to_genome(g_c, c_c)
#'
#' ## What if we've got a GRangesList?
#' g_l <- GRangesList(g_c, g_c[2:5])
#' c_c <- IRanges(start = 4, end = 9)
#' ## Expect: 17:17, 21:25
#' ## 11:12, 16:17, 21:22
#' .to_genome(g_l, c_c)
.to_genome <- function(g_coords, cds_coords) {
## TODO: preserve mcols.
if (is(g_coords, "GRangesList"))
return(GRangesList(
lapply(g_coords, .to_genome, cds_coords = cds_coords)))
if (!is(g_coords, "GRanges"))
stop("'g_coords' is supposed to be a 'GRanges' object")
cds_rel <- .splice(g_coords)
strnd <- unique(as.character(strand(g_coords)))
seqlvl <- unique(seqnames(g_coords))
if (length(strnd) > 1)
stop("All exons are expected to be located on the same strand")
if (length(seqlvl) > 1)
stop("All exons are expected to be located on the same chromosome")
if (strnd == "-")
strnd_num <- -1L
else
strnd_num <- 1L
cums <- cumsum(width(cds_rel))
## Find the exons in which the start and end is located.
start_exon <- which(start(cds_rel) <= start(cds_coords) &
end(cds_rel) >= start(cds_coords))
end_exon <- which(start(cds_rel) <= end(cds_coords) &
end(cds_rel) >= end(cds_coords))
if (length(start_exon) == 0 | length(end_exon) == 0) {
warning("The within transcript/CDS coordinates are outside the region ",
"defined by the provided exons", call. = FALSE)
return(GRanges())
}
## Convert within CDS coordinates into within exon coordinates.
exon_rel_start <- start(cds_coords) + width(cds_rel)[start_exon] -
cums[start_exon]
exon_rel_end <- end(cds_coords) + width(cds_rel)[end_exon] -
cums[end_exon]
## Convert into genomic coordinates.
if (strnd_num > 0) {
genome_start <- start(g_coords)[start_exon] + exon_rel_start - 1
genome_end <- start(g_coords)[end_exon] + exon_rel_end - 1
} else {
genome_end <- end(g_coords)[start_exon] - exon_rel_start + 1
genome_start <- end(g_coords)[end_exon] - exon_rel_end + 1
}
genome_coords <- GRanges(seqnames = seqlvl,
IRanges(start = genome_start, end = genome_end),
strand = strnd)
seqinfo(genome_coords) <- seqinfo(g_coords)
genome_coords <- intersect(genome_coords, g_coords)
## Now grab all of the metadata columns from the second...
mcols(genome_coords) <- mcols(g_coords[findOverlaps(genome_coords,
g_coords,
select = "first")])
genome_coords
}
.filter_for_idType <- function(x, idType) {
if (idType == "protein_id")
return(ProteinIdFilter(x))
if (idType == "uniprot_id")
return(UniprotFilter(x))
if (idType == "tx_id")
return(TxIdFilter(x))
NULL
}
#' @description
#'
#' *Splices* the provided `GRanges`/`IRanges` by removing all intronic ranges.
#'
#' @param x `IRanges`
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @noRd
#'
#' @examples
#'
#' ir <- IRanges(start = c(5, 10, 15), end = c(7, 13, 16))
#' .splice(ir)
.splice <- function(x) {
if (is(x, "IRangesList") | is(x, "list") | is(x, "GRangesList"))
lapply(x, .splice)
else
IRanges(start = c(1, cumsum(width(x)[-length(x)]) + 1),
width = width(x))
}
|