File: select-methods.R

package info (click to toggle)
r-bioc-ensembldb 2.14.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,764 kB
  • sloc: perl: 331; sh: 15; makefile: 5
file content (361 lines) | stat: -rw-r--r-- 14,651 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
## That's to support and interface the AnnotionDbi package.

####============================================================
##  .getColMappings
##
##  That returns a character vector of abbreviated column names
##  which can be/are used by AnnotationDbi with the names correponding
##  to the column names from ensembldb.
##  x: is supposed to be an EnsDb object.
##  all: if TRUE we return all of them, otherwise we just return those
##       that should be visible for the user.
####------------------------------------------------------------
.getColMappings <- function(x, all=FALSE){
    cols <- listColumns(x)
    if(!all){
        cols <- cols[!(cols %in% c("name", "value"))]
    }
    ret <- toupper(gsub("_", replacement="", cols))
    names(ret) <- cols
    return(ret)
}

####============================================================
##  columnForKeytype
##
##  Returns the appropriate column name in the database for the
##  given keytypes.
####------------------------------------------------------------
ensDbColumnForColumn <- function(x, column){
    maps <- .getColMappings(x)
    revmaps <- names(maps)
    names(revmaps) <- maps
    cols <- revmaps[column]
    if(any(is.na(cols))){
        warning("The following columns can not be mapped to column names in the",
                " db: ", paste(column[is.na(cols)], collapse=", "))
        cols <- cols[!is.na(cols)]
    }
    ## Fixing tx_name; tx_name should be mapped to tx_id in the database!
    ##cols[cols == "tx_name"] <- "tx_id"
    return(cols)
}


####============================================================
##  columns method
##
##  Just return the attributes, but as expected by the AnnotationDbi
##  interface (i.e. upper case, no _).
####------------------------------------------------------------
.getColumns <- function(x){
    cols <- .getColMappings(x, all=FALSE)
    names(cols) <- NULL
    return(unique(cols))
}
setMethod("columns", "EnsDb",
          function(x) .getColumns(x)
          )


####============================================================
##  keytypes method
##
##  I will essentially use all of the filters here.
####------------------------------------------------------------
setMethod("keytypes", "EnsDb",
          function(x){
              return(.filterKeytypes(withProteins = hasProteinData(x)))
          }
)
## This just returns some (eventually) usefull names for keys
.simpleKeytypes <- function(x){
    return(c("GENEID","TXID","TXNAME","EXONID","EXONNAME","CDSID","CDSNAME"))
}
.filterKeytypes <- function(withProteins = FALSE){
    return(names(.keytype2FilterMapping(withProteins = withProteins)))
}
## returns a vector mapping keytypes (names of vector) to filter names (elements).
.keytype2FilterMapping <- function(withProteins = FALSE){
    filters <- c(ENTREZID = "EntrezFilter",
                 GENEID = "GeneIdFilter",
                 GENEBIOTYPE = "GeneBiotypeFilter",
                 GENENAME = "GeneNameFilter",
                 TXID = "TxIdFilter",
                 TXBIOTYPE = "TxBiotypeFilter",
                 EXONID = "ExonIdFilter",
                 SEQNAME = "SeqNameFilter",
                 SEQSTRAND = "SeqStrandFilter",
                 TXNAME = "TxIdFilter",
                 SYMBOL = "SymbolFilter")
    if (withProteins) {
        filters <- c(filters,
                     PROTEINID = "ProteinIdFilter",
                     UNIPROTID = "UniprotFilter",
                     PROTEINDOMAINID = "ProteinDomainIdFilter",
                     PROTDOMID = "ProtDomIdFilter",
                     PROTEINDOMAINSOURCE = "ProteinDomainSourceFilter")
    }
    return(filters)
}
filterForKeytype <- function(keytype, x, vals){
    if (missing(vals))
        vals <- 1
    if (!missing(x)) {
        withProts <- hasProteinData(x)
    } else {
        withProts <- FALSE
    }
    filters <- .keytype2FilterMapping(withProts)
    if(any(names(filters) == keytype)){
        filt <- do.call(filters[keytype], args = list(value = vals))
        ## filt <- new(filters[keytype])
        return(filt)
    }else{
        stop("No filter for that keytype!")
    }
}

####============================================================
##  keys method
##
##  This keys method returns all of the keys for a specified keytype.
##  There should also be an implementation without keytypes, which
##  returns in our case the gene_ids
##
####------------------------------------------------------------
setMethod("keys", "EnsDb",
          function(x, keytype, filter, ...){
              if(missing(keytype))
                  keytype <- "GENEID"
              if(missing(filter))
                  filter <- AnnotationFilterList()
              filter <- .processFilterParam(filter, x)
              keyt <- keytypes(x)
              if (length(keytype) > 1) {
                  keytype <- keytype[1]
                  warning("Using only first provided keytype.")
              }
              if (!any(keyt == keytype))
                  stop("keytype '", keytype, "' not supported! ",
                       "Allowed choices are: ",
                       paste0("'", keyt ,"'", collapse = ", "), ".")
              keytype <- match.arg(keytype, keyt)
              ## Map the keytype to the appropriate column name.
              dbColumn <- ensDbColumnForColumn(x, keytype)
              ## Perform the query.
              res <- getWhat(x, columns = dbColumn, filter = filter)[, dbColumn]
              return(res)
          })


############################################################
## select method
##
##  We have to be carefull, if the database contains protein annotations too:
##  o If the keys are DNA/RNA related, start from a DNA/RNA related table.
##  o if keys are protein related: start from a protein column.
##  Reason is that we do have only protein annotations for protein coding genes
##  and no annotation for the remaining. Thus the type of the join (left join,
##  left outer join) is crucial, as well as the table with which we start the
##  query!
##  What if we provide more than one filter?
##  a) GeneNameFilter and ProteinidFilter: doesn't really matter from which table
##     we start, because the query will only return results with protein
##     annotions. -> if there is one DNA/RNA related filter: don't do anything.
##  b) Only protein filters: start from the highest protein table.
setMethod("select", "EnsDb",
          function(x, keys, columns, keytype, ...) {
              if (missing(keys))
                  keys <- NULL
              if (missing(columns))
                  columns <- NULL
              if (missing(keytype))
                  keytype <- "GENEID" # Use Ensembl gene ID as default
              return(.select(x = x, keys = keys, columns = columns,
                             keytype = keytype, ...))
          })
.select <- function(x, keys = NULL, columns = NULL, keytype = NULL, ...) {
    extraArgs <- list(...)
    ## Perform argument checking:
    ## columns:
    if (missing(columns) | is.null(columns))
        columns <- columns(x)
    notAvailable <- !(columns %in% columns(x))
    if (all(notAvailable))
        stop("None of the specified columns are avaliable in the database!")
    if (any(notAvailable)){
        warning("The following columns are not available in the database and",
                " have thus been removed: ",
                paste(columns[notAvailable], collapse = ", "))
        columns <- columns[!notAvailable]
    }
    ## keys:
    if (is.null(keys) | missing(keys)) {
        ## Get everything from the database...
        keys <- list()
    } else {
        if (!(is(keys, "character") | is(keys, "list") | is(keys, "formula") |
              is(keys, "AnnotationFilter") | is(keys, "AnnotationFilterList")))
            stop("Argument keys should be a character vector, an object",
                 " extending AnnotationFilter, a filter expression",
                 " or an AnnotationFilterList.")
        if (is(keys, "character")) {
            if (is.null(keytype)) {
                stop("Argument keytype is mandatory if keys is a",
                     " character vector!")
            }
            ## Check also keytype:
            if (!(keytype %in% keytypes(x)))
                stop("keytype ", keytype, " not available in the database.",
                     " Use keytypes method to list all available keytypes.")
            ## Generate a filter object for the filters.
            keyFilter <- filterForKeytype(keytype, x, vals = keys)
            ## value(keyFilter) <- keys
            ## keyFilter@value <- keys
            keys <- list(keyFilter)
            ## Add also the keytype itself to the columns.
            if (!any(columns == keytype))
                columns <- c(keytype, columns)
        }
        ## Check and fix filter.
        keys <- .processFilterParam(keys, x)
    }
    ## Map the columns to column names we have in the database and
    ## add filter columns too.
    ensCols <- unique(c(ensDbColumnForColumn(x, columns),
                        addFilterColumns(character(), filter = keys, x)))
    ## TODO @jo: Do we have to check that we are allowed to have protein filters
    ##           or columns?
    ## OK, now perform the query given the filters we've got.
    ## Check if keys does only contain protein annotation columns; in that case
    ## select one of tables "protein", "uniprot", "protein_domain" in that order
    ## if (all(unlist(lapply(keys, isProteinFilter)))) {
    if (all(isProteinFilter(keys))) {
        startWith <- "protein_domain"
        if (any(unlist(lapply(keys, function(z) is(z, "UniprotFilter")))))
            startWith <- "uniprot"
        if (any(unlist(lapply(keys, function(z) is(z, "ProteinIdFilter")))))
            startWith <- "protein"
    } else {
        startWith <- NULL
    }
    ## Otherwise set startWith to NULL
    res <- getWhat(x, columns = ensCols, filter = keys, startWith = startWith)
    ## Order results if length of filters is 1.
    if (length(keys) == 1) {
        ## Define the filters on which we could sort.
        sortFilts <- c("GenenameFilter", "GeneNameFilter", "GeneIdFilter",
                       "EntrezFilter", "GeneBiotypeFilter", "SymbolFilter",
                       "TxIdFilter", "TxBiotypeFilter", "ExonIdFilter",
                       "ExonRankFilter", "SeqNameFilter")
        if (class(keys[[1]]) %in% sortFilts) {
            keyvals <- value(keys[[1]])
            ## Handle symlink Filter differently:
            if (is(keys[[1]], "SymbolFilter")) {
                ## sortCol <- ensDbColumn(keys[[1]])
                sortCol <- keys[[1]]@field
            } else {
                sortCol <- ensDbColumn(keys[[1]])
                ## sortCol <- removePrefix(ensDbColumn(keys[[1]], x))
            }
            res <- res[order(match(res[, sortCol], keyvals)), ]
        }
    } else {
        ## Show a mild warning message
        message(paste0("Note: ordering of the results might not match ordering",
                       " of keys!"))
    }
    colMap <- .getColMappings(x)
    colnames(res) <- colMap[colnames(res)]
    rownames(res) <- NULL
    if (returnFilterColumns(x))
        return(res)
    res[, columns]
}

############################################################
##  mapIds method
##
##  maps the submitted keys (names of the returned vector) to values
##  of the column specified by column.
##  x, key, column, keytype, ..., multiVals
setMethod("mapIds", "EnsDb", function(x, keys, column, keytype, ..., multiVals) {
    if(missing(keys))
        keys <- NULL
    if(missing(column))
        column <- NULL
    if(missing(keytype))
        keytype <- NULL
    if(missing(multiVals))
        multiVals <- NULL
    .mapIds(x = x, keys = keys, column = column, keytype = keytype,
            multiVals = multiVals, ...)
})
## Other methods: saveDb, species, dbfile, dbconn, taxonomyId
.mapIds <- function(x, keys = NULL, column = NULL, keytype = NULL, ...,
                    multiVals = NULL) {
    if (is.null(keys))
        stop("Argument keys has to be provided!")
    if (is.null(column))
        column <- "GENEID"
    ## Have to specify the columns argument. Has to be keytype and column.
    if (is(keys, "character")){
        if (is.null(keytype))
            stop("Argument keytype is mandatory if keys is a character vector!")
        columns <- c(keytype, column)
    } else {
        ## Test if we can convert the filter. Returns ALWAYS an
        ## AnnotationFilterList
        keys <- .processFilterParam(keys, x)
        if(length(keys) > 1)
            warning("Got ", length(keys), " filter objects.",
                    " Will use the keys of the first for the mapping!")
        cn <- class(keys[[1]])[1]
        ## Use the first element to determine the keytype...
        mapping <- .keytype2FilterMapping()
        columns <- c(names(mapping)[mapping == cn], column)
        keytype <- NULL
    }
    res <- select(x, keys = keys, columns = columns, keytype = keytype)
    if (is.null(multiVals))
        multiVals <- "first"
    if (is(multiVals, "function"))
        stop("Not yet implemented!")
    if (is.character(keys))
        theNames <- keys
    else
        theNames <- unique(res[, 1])
    switch(multiVals,
           first = {
               vals <- res[match(theNames, res[, 1]), 2]
               names(vals) <- theNames
               not_mapped <- sum(is.na(vals))
           },
           list = {
               vals <- split(res[, 2], f=factor(res[, 1], levels=unique(theNames)))
               not_mapped <- sum(lengths(vals) == 0)
           },
           filter = {
               vals <- split(res[, 2], f = factor(res[, 1],
                                                  levels = unique(theNames)))
               vals <- unlist(vals[lengths(vals) == 1])
               if (length(vals)) return(vals) else return(setNames(nm = character()))
           },
           asNA = {
               ## Split the vector, set all those with multi mappings NA.
               vals <- split(res[, 2], f=factor(res[, 1], levels=unique(theNames)))
               not_mapped <- sum(lengths(vals) == 0)
               vals[unlist(lapply(vals, length)) > 1] <- NA_character_
               vals <- unlist(vals)
           },
           CharacterList = {
               f <- factor(res[, 1], levels = unique(theNames))
               vals <- splitAsList(res[, 2], f=f)
               not_mapped <- sum(lengths(vals) == 0)
           })
    if (not_mapped)
        warning("Unable to map ", not_mapped, " of ", length(theNames),
                " requested IDs.", call. = FALSE)
    vals
}