1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
|
#' @include proteinToX.R
#' @title Map transcript-relative coordinates to amino acid residues of the
#' encoded protein
#'
#' @description
#'
#' `transcriptToProtein` maps within-transcript coordinates to the corresponding
#' coordinates within the encoded protein sequence. The provided coordinates
#' have to be within the coding region of the transcript (excluding the stop
#' codon) but are supposed to be relative to the first nucleotide of the
#' transcript (which includes the 5' UTR). Positions relative to the CDS of a
#' transcript (e.g. /PKP2 c.1643delg/) have to be first converted to
#' transcript-relative coordinates. This can be done with the
#' [cdsToTranscript()] function.
#'
#' @details
#'
#' Transcript-relative coordinates are mapped to the amino acid residues they
#' encode. As an example, positions within the transcript that correspond to
#' nucleotides 1 to 3 in the CDS are mapped to the first position in the
#' protein sequence (see examples for more details).
#'
#' @param x `IRanges` with the coordinates within the transcript. Coordinates
#' are counted from the start of the transcript (including the 5' UTR). The
#' Ensembl IDs of the corresponding transcripts have to be provided either
#' as `names` of the `IRanges`, or in one of its metadata columns.
#'
#' @param db `EnsDb` object.
#'
#' @param id `character(1)` specifying where the transcript identifier can be
#' found. Has to be either `"name"` or one of `colnames(mcols(prng))`.
#'
#' @return
#'
#' `IRanges` with the same length (and order) than the input `IRanges`
#' `x`. Each element in `IRanges` provides the coordinates within the
#' protein sequence, names being the (Ensembl) IDs of the protein. The
#' original transcript ID and the transcript-relative coordinates are provided
#' as metadata columns. Metadata columns `"cds_ok"` indicates whether the
#' length of the transcript's CDS matches the length of the encoded protein.
#' `IRanges` with a start coordinate of `-1` is returned for transcript
#' coordinates that can not be mapped to protein-relative coordinates
#' (either no transcript was found for the provided ID, the transcript
#' does not encode a protein or the provided coordinates are not within
#' the coding region of the transcript).
#'
#' @family coordinate mapping functions
#'
#' @seealso [cdsToTranscript()] and [transcriptToCds()] for conversion between
#' CDS- and transcript-relative coordinates.
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @examples
#'
#' library(EnsDb.Hsapiens.v86)
#' ## Restrict all further queries to chromosome x to speed up the examples
#' edbx <- filter(EnsDb.Hsapiens.v86, filter = ~ seq_name == "X")
#'
#' ## Define an IRanges with the positions of the first 2 nucleotides of the
#' ## coding region for the transcript ENST00000381578
#' txpos <- IRanges(start = 692, width = 2, names = "ENST00000381578")
#'
#' ## Map these to the corresponding residues in the protein sequence
#' ## The protein-relative coordinates are returned as an `IRanges` object,
#' ## with the original, transcript-relative coordinates provided in metadata
#' ## columns tx_start and tx_end
#' transcriptToProtein(txpos, edbx)
#'
#' ## We can also map multiple ranges. Note that for any of the 3 nucleotides
#' ## encoding the same amino acid the position of this residue in the
#' ## protein sequence is returned. To illustrate this we map below each of the
#' ## first 4 nucleotides of the CDS to the corresponding position within the
#' ## protein.
#' txpos <- IRanges(start = c(692, 693, 694, 695),
#' width = rep(1, 4), names = rep("ENST00000381578", 4))
#' transcriptToProtein(txpos, edbx)
#'
#' ## If the mapping fails, an IRanges with negative start position is returned.
#' ## Mapping can fail (as below) because the ID is not known.
#' transcriptToProtein(IRanges(1, 1, names = "unknown"), edbx)
#'
#' ## Or because the provided coordinates are not within the CDS
#' transcriptToProtein(IRanges(1, 1, names = "ENST00000381578"), edbx)
transcriptToProtein <- function(x, db, id = "name") {
if (missing(x) || !is(x, "IRanges"))
stop("Argument 'x' is required and has to be an 'IRanges' object")
if (missing(db) || !is(db, "EnsDb"))
stop("Argument 'db' is required and has to be an 'EnsDb' object")
.txs_to_proteins(x, db = db, id = id)
}
#' This version performs the mapping for each IRange separately! Results are
#' the same as in .txs_to_protins. While the code is easier to read and to
#' debug, it is also considerably slower.
#'
#' @noRd
.tx_to_protein <- function(x, db, id = "name") {
if (length(x) > 1)
return(unlist(IRangesList(
lapply(split(x, 1:length(x)), FUN = .tx_to_protein,
db = db, id = id)), use.names = FALSE))
id <- match.arg(id, c("name", colnames(mcols(x))))
if (id == "name")
ids <- names(x)
else ids <- mcols(x)[, id]
if (any(is.null(ids)))
stop("All IDs are NULL")
empty_ranges <- IRanges(start = -1, width = 1)
mcols(empty_ranges) <- DataFrame(tx_id = ids,
tx_start = start(x),
tx_end = end(x),
cds_ok = NA)
tx_lens <- .transcriptLengths(db,
filter = TxIdFilter(ids),
with.cds_len = TRUE,
with.utr5_len = TRUE,
with.utr3_len = TRUE)
## Does the tx exist?
if (nrow(tx_lens) == 0) {
warning("Transcript '", ids, "' can not be found", call. = FALSE)
return(empty_ranges)
}
## Is it a protein coding tx?
if (is.na(tx_lens$cds_len)) {
warning("Transcript '", ids, "' does not encode a protein",
call. = FALSE)
return(empty_ranges)
}
if (is.na(tx_lens$utr5_len))
tx_lens$utr5_len <- 0
if (is.na(tx_lens$utr3_len))
tx_lens$utr3_len <- 0
## Are the coordinates within the CDS? Exclude the stop codon!
if (start(x) <= tx_lens$utr5_len |
end(x) > (tx_lens$utr5_len + tx_lens$cds_len - 3)) {
warning("The provided coordinates for '", ids,
"' are not within the coding region", call. = FALSE)
return(empty_ranges)
}
## Define the coordinates
end(empty_ranges) <- ceiling((end(x) - tx_lens$utr5_len) / 3)
start(empty_ranges) <- ceiling((start(x) - tx_lens$utr5_len) / 3)
## Now check if the CDS length matches the protein sequence length.
prt <- proteins(db, filter = TxIdFilter(ids), columns = "protein_sequence")
names(empty_ranges) <- prt$protein_id
cds_ok <- nchar(prt$protein_sequence) * 3 == (tx_lens$cds_len - 3)
if (!cds_ok)
warning("The CDS of '", ids, "' does not match the length of the ",
"encoded protein. Returned protein coordinates might not be",
" correct", call. = FALSE)
mcols(empty_ranges)$cds_ok <- cds_ok
empty_ranges
}
#' @details
#'
#' Transcript-relative coordinates are mapped to the amino acid residues they
#' encode. As an example, positions within the transcript that corrspond to
#' nucleotides 1 to 3 in the CDS are mapped to the first position in the
#' protein sequence (see examples for more details).
#' (e.g. a transcript relative position corresponding to the first nucleotide
#' of the transcript's CDS is mapped to the first position in the protein
#' sequence, same as if the transcri(no matter which transcript relative
#' position corresponding to the first,
#' second or third nucleotide of the CDS are provided, all (any) of
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @noRd
.txs_to_proteins <- function(x, db, id = "name") {
## Fetch all in one.
id <- match.arg(id, c("name", colnames(mcols(x))))
if (id == "name")
ids <- names(x)
else ids <- mcols(x)[, id]
if (any(is.null(ids)))
stop("One or more of the provided IDs are NULL", call. = FALSE)
names(x) <- ids
## Define internal IDs - we'll need them to return the result in the
## correct order.
internal_ids <- paste0(names(x), ":", start(x), ":", end(x))
tx_lens <- .transcriptLengths(db,
filter = TxIdFilter(unique(ids)),
with.cds_len = TRUE,
with.utr5_len = TRUE,
with.utr3_len = TRUE)
## Process transcripts not found
not_found <- !(ids %in% tx_lens$tx_id)
fail_res <- IRanges()
if (any(not_found)) {
## issue #69 does not apply here, even if redundant ids are used,
## all of them are considered.
warning("Transcript(s) ", paste0("'", ids[not_found], "'",
collapse = ", "),
" could not be found", call. = FALSE)
fail_res <- IRanges(start = rep(-1, sum(not_found)),
width = rep(1, sum(not_found)))
## Add metadata columnds.
mcols(fail_res) <- DataFrame(tx_id = ids[not_found],
tx_start = start(x[not_found]),
tx_end = end(x[not_found]),
cds_ok = NA)
if (all(not_found))
return(fail_res[match(internal_ids,
paste0(mcols(fail_res)$tx_id, ":",
mcols(fail_res)$tx_start, ":",
mcols(fail_res)$tx_end))])
}
## Remove non-coding transcripts
not_coding <- is.na(tx_lens$cds_len)
if (any(not_coding)) {
not_coding_id <- tx_lens$tx_id[not_coding]
warning("Transcript(s) ", paste0("'", not_coding_id, "'",
collapse = ", "),
" do/does not encode a protein", call. = FALSE)
## Subset x to the non-coding ones (issue #69)
x_sub <- x[ids %in% not_coding_id]
not_coding_res <- IRanges(start = rep(-1, length(x_sub)),
width = rep(1, length(x_sub)))
## Add metadata columnds.
mcols(not_coding_res) <- DataFrame(tx_id = names(x_sub),
tx_start = start(x_sub),
tx_end = end(x_sub),
cds_ok = NA)
fail_res <- c(fail_res, not_coding_res)
if (all(not_coding))
return(fail_res[match(internal_ids,
paste0(mcols(fail_res)$tx_id, ":",
mcols(fail_res)$tx_start, ":",
mcols(fail_res)$tx_end))])
tx_lens <- tx_lens[!not_coding, , drop = FALSE]
}
## Ensure we have no missing 3' or 5' UTRs
tx_lens$utr3_len[is.na(tx_lens$utr3_len)] <- 0
tx_lens$utr5_len[is.na(tx_lens$utr5_len)] <- 0
x <- x[ids %in% tx_lens$tx_id]
id_idx <- match(names(x), tx_lens$tx_id)
## Are the coordinates within the CDS? Exclude the stop codon!
outside_cds <- start(x) <= tx_lens$utr5_len[id_idx] |
end(x) > (tx_lens$utr5_len[id_idx] + tx_lens$cds_len[id_idx] - 3)
if (any(outside_cds)) {
## Also save against issue #69.
outside_res <- IRanges(start = rep(-1, sum(outside_cds)),
width = rep(1, sum(outside_cds)))
## Add metadata columnds.
mcols(outside_res) <- DataFrame(tx_id = names(x)[outside_cds],
tx_start = start(x[outside_cds]),
tx_end = end(x[outside_cds]),
cds_ok = NA)
fail_res <- c(fail_res, outside_res)
warning("Provided coordinates for ",
paste0("'", names(x)[outside_cds], "'", collapse = ", "),
" are not within the coding region", call. = FALSE)
if (all(outside_cds))
return(fail_res[match(internal_ids,
paste0(mcols(fail_res)$tx_id, ":",
mcols(fail_res)$tx_start, ":",
mcols(fail_res)$tx_end))])
x <- x[!outside_cds]
}
## Now check if the CDS length matches the protein sequence length.
prt <- proteins(db, filter = TxIdFilter(names(x)),
columns = "protein_sequence")
id_idx_prt <- match(names(x), prt$tx_id)
id_idx <- match(names(x), tx_lens$tx_id)
res <- IRanges(start = ceiling((start(x) - tx_lens$utr5_len[id_idx]) / 3),
end = ceiling((end(x) - tx_lens$utr5_len[id_idx]) / 3),
names = prt$protein_id[id_idx_prt])
cds_ok <- nchar(prt$protein_sequence[id_idx_prt]) * 3 ==
(tx_lens$cds_len[id_idx] - 3)
if (any(!cds_ok))
warning("The CDS of ", paste0("'", unique(names(x)[!cds_ok]), "'",
collapse = ", "),
" does not match the length of the encoded protein. Returned",
" protein coordinates for this/these transcript(s) might not",
" be correct", call. = FALSE)
mcols(res) <- DataFrame(tx_id = names(x), tx_start = start(x),
tx_end = end(x), cds_ok = cds_ok)
res <- c(fail_res, res)
res[match(internal_ids, paste0(mcols(res)$tx_id, ":",
mcols(res)$tx_start, ":",
mcols(res)$tx_end))]
}
#' @title Map transcript-relative coordinates to genomic coordinates
#'
#' @description
#'
#' `transcriptToGenome` maps transcript-relative coordinates to genomic
#' coordinates. Provided coordinates are expected to be relative to the first
#' nucleotide of the **transcript**, not the **CDS**. CDS-relative coordinates
#' have to be converted to transcript-relative positions first with the
#' [cdsToTranscript()] function.
#'
#' @inheritParams transcriptToProtein
#'
#' @return
#'
#' `GRangesList` with the same length (and order) than the input `IRanges`
#' `x`. Each `GRanges` in the `GRangesList` provides the genomic coordinates
#' corresponding to the provided within-transcript coordinates. The
#' original transcript ID and the transcript-relative coordinates are provided
#' as metadata columns as well as the ID of the individual exon(s). An empty
#' `GRanges` is returned for transcripts that can not be found in the database.
#'
#' @md
#'
#' @author Johannes Rainer
#'
#' @family coordinate mapping functions
#'
#' @seealso [cdsToTranscript()] and [transcriptToCds()] for the mapping between
#' CDS- and transcript-relative coordinates.
#'
#' @examples
#'
#' library(EnsDb.Hsapiens.v86)
#' ## Restrict all further queries to chromosome x to speed up the examples
#' edbx <- filter(EnsDb.Hsapiens.v86, filter = ~ seq_name == "X")
#'
#' ## Below we map positions 1 to 5 within the transcript ENST00000381578 to
#' ## the genome. The ID of the transcript has to be provided either as names
#' ## or in one of the IRanges' metadata columns
#' txpos <- IRanges(start = 1, end = 5, names = "ENST00000381578")
#'
#' transcriptToGenome(txpos, edbx)
#' ## The object returns a GRangesList with the genomic coordinates, in this
#' ## example the coordinates are within the same exon and map to a single
#' ## genomic region.
#'
#' ## Next we map nucleotides 501 to 505 of ENST00000486554 to the genome
#' txpos <- IRanges(start = 501, end = 505, names = "ENST00000486554")
#'
#' transcriptToGenome(txpos, edbx)
#' ## The positions within the transcript are located within two of the
#' ## transcripts exons and thus a `GRanges` of length 2 is returned.
#'
#' ## Next we map multiple regions, two within the same transcript and one
#' ## in a transcript that does not exist.
#' txpos <- IRanges(start = c(501, 1, 5), end = c(505, 10, 6),
#' names = c("ENST00000486554", "ENST00000486554", "some"))
#'
#' res <- transcriptToGenome(txpos, edbx)
#'
#' ## The length of the result GRangesList has the same length than the
#' ## input IRanges
#' length(res)
#'
#' ## The result for the last region is an empty GRanges, because the
#' ## transcript could not be found in the database
#' res[[3]]
#'
#' res
transcriptToGenome <- function(x, db, id = "name") {
if (missing(x) || !is(x, "IRanges"))
stop("Argument 'x' is required and has to be an 'IRanges' object")
if (missing(db) || !is(db, "EnsDb"))
stop("Argument 'db' is required and has to be an 'EnsDb' object")
res <- .tx_to_genome(x, db, id = id)
not_found <- sum(lengths(res) == 0)
if (not_found > 0)
warning(not_found, " transcript(s) could either not be found in the ",
"database or the specified range is outside the transcript's ",
"sequence")
res
}
.tx_to_genome <- function(x, db, id = "name") {
id <- match.arg(id, c("name", colnames(mcols(x))))
if (id == "name")
ids <- names(x)
else ids <- mcols(x)[, id]
if (any(is.null(ids)))
stop("One or more of the provided IDs are NULL", call. = FALSE)
names(x) <- ids
exns <- exonsBy(db, filter = TxIdFilter(unique(ids)))
## Loop over x
res <- lapply(split(x, f = 1:length(x)), function(z) {
if (any(names(exns) == names(z))) {
gen_map <- .to_genome(exns[[names(z)]], z)
if (length(gen_map)) {
mcols(gen_map) <- DataFrame(mcols(gen_map), tx_start = start(z),
tx_end = end(z))
gen_map[order(gen_map$exon_rank)]
} else GRanges()
} else GRanges()
})
names(res) <- ids
as(res, "GRangesList")
}
#' @title Map transcript-relative coordinates to positions within the CDS
#'
#' @description
#'
#' Converts transcript-relative coordinates to positions within the CDS (if the
#' transcript encodes a protein).
#'
#' @param x `IRanges` with the coordinates within the transcript. Coordinates
#' are expected to be relative to the transcription start (the first
#' nucleotide of the transcript). The Ensembl IDs of the corresponding
#' transcripts have to be provided either as `names` of the `IRanges`, or
#' in one of its metadata columns.
#'
#' @inheritParams transcriptToProtein
#'
#' @return
#'
#' `IRanges` with the same length (and order) than the input `IRanges`
#' `x`. Each element in `IRanges` provides the coordinates within the
#' transcripts CDS. The transcript-relative coordinates are provided
#' as metadata columns.
#' `IRanges` with a start coordinate of `-1` is returned for transcripts
#' that are not known in the database, non-coding transcripts or if the
#' provided start and/or end coordinates are not within the coding region.
#'
#' @family coordinate mapping functions
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @examples
#'
#' library(EnsDb.Hsapiens.v86)
#' ## Defining transcript-relative coordinates for 4 transcripts of the gene
#' ## BCL2
#' txcoords <- IRanges(start = c(1463, 3, 143, 147), width = 1,
#' names = c("ENST00000398117", "ENST00000333681",
#' "ENST00000590515", "ENST00000589955"))
#'
#' ## Map the coordinates.
#' transcriptToCds(txcoords, EnsDb.Hsapiens.v86)
#'
#' ## ENST00000590515 does not encode a protein and thus -1 is returned
#' ## The coordinates within ENST00000333681 are outside the CDS and thus also
#' ## -1 is reported.
transcriptToCds <- function(x, db, id = "name") {
if (missing(x) || !is(x, "IRanges"))
stop("Argument 'x' is required and has to be an 'IRanges' object")
if (missing(db) || !is(db, "EnsDb"))
stop("Argument 'db' is required and has to be an 'EnsDb' object")
id <- match.arg(id, c("name", colnames(mcols(x))))
if (id == "name")
ids <- names(x)
else ids <- mcols(x)[, id]
tx_lens <- .transcriptLengths(db, with.utr5_len = TRUE,
with.cds_len = TRUE,
filter = ~ tx_id %in% ids)
mcols(x)$tx_start <- start(x)
mcols(x)$tx_end <- end(x)
start(x) <- -1
end(x) <- -1
if (nrow(tx_lens)) {
## IDs not found
nf <- !(ids %in% tx_lens$tx_id)
if (any(nf))
warning("Could not find ", sum(nf), " of ", length(ids),
" transcript(s): ", .ids_message(ids[nf]))
new_start <- mcols(x)$tx_start - tx_lens[ids, "utr5_len"]
new_end <- mcols(x)$tx_end - tx_lens[ids, "utr5_len"]
## non-coding
isna <- !nf & is.na(new_start)
if (any(isna))
warning(sum(isna), " of ", length(ids), " transcript(s) are non-",
"coding: ", .ids_message(ids[isna]))
## coordinate not in CDS?
notcds <- !nf & !isna & (new_start <= 0 | new_end <= 0)
if (any(notcds))
warning("Coordinates for ", sum(notcds), " of ", length(ids),
" transcript(s) are not in the coding region: ",
.ids_message(ids[notcds]))
endout <- !nf & !isna & !notcds & new_end > tx_lens[ids, "cds_len"]
if (any(endout))
warning("End coordinate for ", sum(endout), " of ", length(ids),
" transcript(s) are outside of the coding region: ",
.ids_message(ids[endout]))
## Now update coordinates
end(x[!nf &!isna & !notcds & !endout]) <-
new_end[!nf &!isna & !notcds & !endout]
start(x[!nf & !isna & !notcds & !endout]) <-
new_start[!nf & !isna & !notcds & !endout]
} else
warning("Could not find any of the provided transcript IDs")
x
}
#' @title Map positions within the CDS to coordinates relative to the start of
#' the transcript
#'
#' @description
#'
#' Converts CDS-relative coordinates to positions within the transcript, i.e.
#' relative to the start of the transcript and hence including its 5' UTR.
#'
#' @param x `IRanges` with the coordinates within the CDS. Coordinates
#' are expected to be relative to the transcription start (the first
#' nucleotide of the transcript). The Ensembl IDs of the corresponding
#' transcripts have to be provided either as `names` of the `IRanges`, or
#' in one of its metadata columns.
#'
#' @inheritParams transcriptToProtein
#'
#' @return
#'
#' `IRanges` with the same length (and order) than the input `IRanges`
#' `x`. Each element in `IRanges` provides the coordinates within the
#' transcripts CDS. The transcript-relative coordinates are provided
#' as metadata columns.
#' `IRanges` with a start coordinate of `-1` is returned for transcripts
#' that are not known in the database, non-coding transcripts or if the
#' provided start and/or end coordinates are not within the coding region.
#'
#' @family coordinate mapping functions
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @examples
#'
#' library(EnsDb.Hsapiens.v86)
#' ## Defining transcript-relative coordinates for 4 transcripts of the gene
#' ## BCL2
#' txcoords <- IRanges(start = c(4, 3, 143, 147), width = 1,
#' names = c("ENST00000398117", "ENST00000333681",
#' "ENST00000590515", "ENST00000589955"))
#'
#' cdsToTranscript(txcoords, EnsDb.Hsapiens.v86)
#'
#' ## Next we map the coordinate for variants within the gene PKP2 to the
#' ## genome. The variants is PKP2 c.1643DelG and the provided
#' ## position is thus relative to the CDS. We have to convert the
#' ## position first to transcript-relative coordinates.
#' pkp2 <- IRanges(start = 1643, width = 1, name = "ENST00000070846")
#'
#' ## Map the coordinates by first converting the CDS- to transcript-relative
#' ## coordinates
#' transcriptToGenome(cdsToTranscript(pkp2, EnsDb.Hsapiens.v86),
#' EnsDb.Hsapiens.v86)
cdsToTranscript <- function(x, db, id = "name") {
if (missing(x) || !is(x, "IRanges"))
stop("Argument 'x' is required and has to be an 'IRanges' object")
if (missing(db) || !is(db, "EnsDb"))
stop("Argument 'db' is required and has to be an 'EnsDb' object")
id <- match.arg(id, c("name", colnames(mcols(x))))
if (id == "name")
ids <- names(x)
else ids <- mcols(x)[, id]
tx_lens <- .transcriptLengths(db, with.utr5_len = TRUE,
with.cds_len = TRUE,
filter = ~ tx_id %in% ids)
mcols(x)$cds_start <- start(x)
mcols(x)$cds_end <- end(x)
start(x) <- -1
end(x) <- -1
if (nrow(tx_lens)) {
## IDs not found
nf <- !(ids %in% tx_lens$tx_id)
if (any(nf))
warning("Could not find ", sum(nf), " of ", length(ids),
" transcript(s): ", .ids_message(ids[nf]))
new_start <- mcols(x)$cds_start + tx_lens[ids, "utr5_len"]
new_end <- mcols(x)$cds_end + tx_lens[ids, "utr5_len"]
isna <- !nf & is.na(new_start)
if (any(isna))
warning(sum(isna), " of ", length(ids), " transcript(s) are non-",
"coding: ", .ids_message(ids[isna]))
## coordinate not in CDS?
notcds <- !nf & !isna &
(mcols(x)$cds_start > tx_lens[ids, "cds_len"] |
mcols(x)$cds_end >= tx_lens[ids, "cds_len"])
if (any(notcds))
warning("Coordinates for ", sum(notcds), " of ", length(ids),
" transcript(s) are not in the coding region: ",
.ids_message(ids[notcds]))
## Now update coordinates
end(x[!nf & !isna & !notcds]) <- new_end[!nf & !isna & !notcds]
start(x[!nf & !isna & !notcds]) <- new_start[!nf & !isna & !notcds]
} else
warning("Could not find any of the provided transcript IDs")
x
}
.ids_message <- function(x) {
mess <- paste(x[1:min(3, length(x))], collapse = ", ")
if (length(x) > 3) {
mess <- paste0(mess, " ... (", length(x) - 3, " more)")
}
mess
}
|