1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
test_that("residual calculation works", {
set.seed(1)
X <- cbind(1, matrix(rnorm(4 * 2) , nrow = 4, ncol = 2))
Y <- matrix(rnbinom(n = 2 * 4, mu = 30, size = 0.7), nrow = 2, ncol = 4)
fit <- glm_gp(Y, X, size_factors = FALSE, overdispersion = 1/0.7)
r_fit1 <- glm(Y[1,] ~ X - 1, family = MASS::negative.binomial(theta = 0.7))
r_fit2 <- glm(Y[2,] ~ X - 1, family = MASS::negative.binomial(theta = 0.7))
expect_equal(unname(fit$Beta[1,]), unname(coef(r_fit1)), tolerance = 1e-4)
expect_equal(unname(fit$Beta[2,]), unname(coef(r_fit2)), tolerance = 1e-4)
expect_equal(c(t(residuals(fit, "response"))),
unname(c(residuals.glm(r_fit1, "response"), residuals.glm(r_fit2, "response"))),
tolerance = 1e-4)
expect_equal(c(t(residuals(fit, "working"))),
unname(c(residuals.glm(r_fit1, "working"), residuals.glm(r_fit2, "working"))),
tolerance = 1e-5)
expect_equal(c(t(residuals(fit, "pearson"))),
unname(c(residuals.glm(r_fit1, "pearson"), residuals.glm(r_fit2, "pearson"))),
tolerance = 1e-5)
expect_equal(c(t(residuals(fit, "deviance"))),
unname(c(residuals.glm(r_fit1, "deviance"), residuals.glm(r_fit2, "deviance"))),
tolerance = 1e-5)
# Randomized Quantiles are by definition not equal
r_qs <- c(statmod::qresiduals(r_fit1), statmod::qresiduals(r_fit2))
res <- c(t(residuals(fit, "randomized_quantile")))
expect_gt(cor(r_qs, res), 0.99)
})
test_that("residuals are named", {
set.seed(1)
X <- cbind(1, matrix(rnorm(4 * 2) , nrow = 4, ncol = 2))
Y <- matrix(rnbinom(n = 2 * 4, mu = 30, size = 0.7), nrow = 2, ncol = 4)
rownames(Y) <- paste0("Gene_", seq_len(nrow(Y)))
colnames(Y) <- paste0("Cell_", seq_len(ncol(Y)))
fit <- glm_gp(Y, X, size_factors = FALSE, overdispersion = 1/0.7)
expect_equal(dimnames(residuals(fit)), dimnames(Y))
})
test_that("residual calculation works with Delayed Matrix", {
set.seed(1)
X <- cbind(1, matrix(rnorm(4 * 2) , nrow = 4, ncol = 2))
Y <- matrix(rnbinom(n = 2 * 4, mu = 30, size = 0.7), nrow = 2, ncol = 4)
Y_hdf5 <- HDF5Array::writeHDF5Array(Y)
fit <- glm_gp(Y_hdf5, X, size_factors = FALSE, overdispersion = 1/0.7)
r_fit1 <- glm(Y[1,] ~ X - 1, family = MASS::negative.binomial(theta = 0.7))
r_fit2 <- glm(Y[2,] ~ X - 1, family = MASS::negative.binomial(theta = 0.7))
expect_equal(unname(fit$Beta[1,]), unname(coef(r_fit1)), tolerance = 1e-4)
expect_equal(unname(fit$Beta[2,]), unname(coef(r_fit2)), tolerance = 1e-4)
expect_s4_class(residuals(fit, "response"), "DelayedMatrix")
expect_s4_class(residuals(fit, "working"), "DelayedMatrix")
expect_s4_class(residuals(fit, "pearson"), "DelayedMatrix")
expect_s4_class(residuals(fit, "deviance"), "DelayedMatrix")
expect_true(DelayedArray::isPristine(residuals(fit, "response")))
expect_true(DelayedArray::isPristine(residuals(fit, "working")))
expect_true(DelayedArray::isPristine(residuals(fit, "pearson")))
expect_true(DelayedArray::isPristine(residuals(fit, "deviance")))
expect_equal(c(t(residuals(fit, "response"))),
unname(c(residuals.glm(r_fit1, "response"), residuals.glm(r_fit2, "response"))),
tolerance = 1e-4)
expect_equal(c(t(residuals(fit, "working"))),
unname(c(residuals.glm(r_fit1, "working"), residuals.glm(r_fit2, "working"))),
tolerance = 1e-5)
expect_equal(c(t(residuals(fit, "pearson"))),
unname(c(residuals.glm(r_fit1, "pearson"), residuals.glm(r_fit2, "pearson"))),
tolerance = 1e-5)
expect_equal(c(t(residuals(fit, "deviance"))),
unname(c(residuals.glm(r_fit1, "deviance"), residuals.glm(r_fit2, "deviance"))),
tolerance = 1e-5)
# Randomized Quantiles are by definition not equal
r_qs <- c(statmod::qresiduals(r_fit1), statmod::qresiduals(r_fit2))
res <- c(t(residuals(fit, "randomized_quantile")))
expect_gt(cor(r_qs, res), 0.99)
})
test_that("qres.gampoi can handle extreme value", {
Y <- matrix(27)
Mu <- matrix(2)
overdispersion <- 0
res <- qres.gampoi(Y, Mu, overdispersion)
expect_false(is.infinite(res))
Y <- matrix(2700)
res <- qres.gampoi(Y, Mu, overdispersion)
expect_false(is.infinite(res))
Y <- matrix(2)
Mu <- matrix(270)
res <- qres.gampoi(Y, Mu, overdispersion)
expect_false(is.infinite(res))
Y <- matrix(c(2, 2), ncol = 1)
Mu <- matrix(c(270, 270), ncol = 1)
overdispersion <- c(0, 500)
res <- qres.gampoi(Y, Mu, overdispersion)
expect_false(is.infinite(res[1,1]), is.infinite(res[2,1]))
expect_false(res[1,1] == res[2,1])
})
test_that("qres.gampoi can handle other weird values", {
if(R.version$arch == "i686") {
skip("i686 does not exhibit this weird issue.")
}
# This specific combination of parameters caused NA's
Y <- matrix(27)
Mu <- matrix(0.435023)
overdispersion <- 0
a <- ppois(Y - 1, lambda = Mu)
b <- ppois(Y, lambda = Mu)
# This really shouldn't happen
# Nonetheless, it does for this combination of parameters
# at least on Linux and MacOS
if(! is_windows()){
expect_gt(a, b)
}
# However, now qres.gampoi handles this edge case
res <- qres.gampoi(Y, Mu, overdispersion)
expect_false(is.nan(res))
})
test_that("compute_gp_deviance can handle weird values", {
# This specific combination of parameters caused negative deviance
y <- 1
mu <- 0.99999999999994
theta <- 1e-7
# However, now qres.gampoi handles this edge case
res <- compute_gp_deviance(y, mu, theta)
expect_gte(res, 0)
})
test_that("residuals are never NA", {
Y <- matrix(0, nrow = 3, ncol = 10)
Y[1, 4] <- 4
Y[3, 2] <- 17
fit <- glm_gp(Y, size_factors = FALSE)
expect_true(all(! is.na(residuals(fit, "deviance"))))
expect_true(all(! is.na(residuals(fit, "pearson"))))
expect_true(all(! is.na(residuals(fit, "randomized_quantile"))))
expect_true(all(! is.na(residuals(fit, "working"))))
expect_true(all(! is.na(residuals(fit, "response"))))
})
|