File: HDF5ArraySeed-class.R

package info (click to toggle)
r-bioc-hdf5array 1.34.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,736 kB
  • sloc: ansic: 5,815; makefile: 4
file content (425 lines) | stat: -rw-r--r-- 14,810 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
### =========================================================================
### HDF5ArraySeed objects
### -------------------------------------------------------------------------


setClass("HDF5ArraySeed",
    contains=c("Array", "OutOfMemoryObject"),
    representation(
      ## ----------------- user supplied slots -----------------

        ## H5File object or **absolute** path to a local HDF5 file so the
        ## object won't break when the user changes the working directory
        ## (e.g. with setwd()). The path must also be in its canonical
        ## form so comparing paths from different objects is meaningful
        ## (required by quickResaveHDF5SummarizedExperiment()).
        filepath="character_OR_H5File",

        ## Name of dataset in the HDF5 file.
        name="character",

        ## Whether the HDF5 dataset should be considered sparse (and treated
        ## as such) or not. Slot added in HDF5Array 1.17.8.
        as_sparse="logical",  # TRUE or FALSE

        ## NA or the desired type. Slot added in HDF5Array 1.15.6.
        type="character",

      ## ------------ automatically populated slots ------------

        dim="integer",
        chunkdim="integer_OR_NULL",
        first_val="ANY"  # first value in the dataset
    ),
    prototype(
        as_sparse=FALSE,
        type=NA_character_
    )
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Validity
###

### Check that 'x' points to an HDF5 dataset that has the expected dimensions
### and chunk dimensions.
validate_HDF5ArraySeed_dataset_geometry <- function(x, what="object")
{
    h5_dim <- h5dim(x@filepath, x@name)
    if (!identical(h5_dim, x@dim))
        return(paste0(what, " points to an HDF5 dataset (\"", x@name, "\") ",
                      "in HDF5 file \"", x@filepath, "\" ",
                      "that does not have the expected dimensions"))
    h5_chunkdim <- h5chunkdim(x@filepath, x@name, adjust=TRUE)
    if (!identical(h5_chunkdim, x@chunkdim))
        return(paste0(what, " points to an HDF5 dataset (\"", x@name, "\") ",
                      "in HDF5 file \"", x@filepath, "\" ",
                      "that does not have the expected chunk dimensions"))
    TRUE
}

.validate_HDF5ArraySeed <- function(x)
{
    ## 'filepath' and 'name' slots.
    x_filepath <- x@filepath
    x_name <- x@name
    if (is(x_filepath, "H5File")) {
        ## TODO: Implement the H5File case.
        ## Note that using 'validObject(x@filepath)' won't be enough
        ## because a closed H5File object is considered valid. We want to make
        ## sure that the H5File object is opened and has a working file ID.
    } else {
        msg <- validate_h5_absolute_path(x_filepath, "'filepath' slot")
        if (!isTRUE(msg))
            return(msg)
        msg <- validate_h5_dataset_name(x_filepath, x_name, "'name' slot")
        if (!isTRUE(msg))
            return(msg)
    }

    ## 'as_sparse' slot.
    x_as_sparse <- x@as_sparse
    if (!isTRUEorFALSE(x_as_sparse))
        return("'as_sparse' slot must be TRUE or FALSE")

    ## 'dim' slot.
    msg <- S4Arrays:::validate_dim_slot(x, "dim")
    if (!isTRUE(msg))
        return(msg)

    ## 'chunkdim' slot.
    x_chunkdim <- x@chunkdim
    if (!is.null(x_chunkdim)) {
        msg <- S4Arrays:::validate_dim_slot(x, "chunkdim")
        if (!isTRUE(msg))
            return(msg)
    }

    if (!is(x_filepath, "H5File")) {
        ## Check that the dataset has the expected dimensions and
        ## chunk dimensions.
        msg <- validate_HDF5ArraySeed_dataset_geometry(x)
        if (!isTRUE(msg))
            return(msg)
    }

    ## Check that the dimnames stored in the file are consistent with
    ## the dimensions of the HDF5 dataset.
    msg <- validate_lengths_of_h5dimnames(x_filepath, x_name)
    if (!isTRUE(msg))
        return(msg)

    TRUE
}

setValidity2("HDF5ArraySeed", .validate_HDF5ArraySeed)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### path() getter/setter
###

### Does NOT access the file.
setMethod("path", "HDF5ArraySeed",
    function(object)
    {
        filepath <- object@filepath
        if (is(filepath, "H5File"))
            filepath <- path(filepath)
        filepath
    }
)

### Return a fake value (of the correct type) if the dataset is empty i.e.
### if at least one of its dimensions is 0.
.read_h5dataset_first_val <- function(filepath, name, dim)
{
    if (any(dim == 0L)) {
        type <- get_h5mread_returned_type(filepath, name)
        val <- vector(type, 1L)  # fake value
    } else {
        index <- rep.int(list(1L), length(dim))
        val <- h5mread(filepath, name, index, as.vector=TRUE)
        stopifnot(length(val) == 1L)  # sanity check
    }
    val
}

setReplaceMethod("path", "HDF5ArraySeed",
    function(object, value)
    {
        if (is(value, "H5File")) {
            new_filepath <- value
            value <- path(value)
            ## Check dim compatibility.
            ## TODO: Implement this.
        } else {
            new_filepath <- normarg_h5_filepath(value,
                                                what1="the supplied path",
                                                what2="the HDF5 dataset")
            ## Check dim compatibility.
            new_dim <- h5dim(new_filepath, object@name)
            object_dim <- object@dim
            if (!identical(new_dim, object_dim)) {
                new_dim_in1string <- paste0(new_dim, collapse=" x ")
                dim_in1string <- paste0(object_dim, collapse=" x ")
                stop(wmsg("dimensions (", new_dim_in1string, ") ",
                          "of HDF5 dataset '", object@name, "' ",
                          "from file '", value, "' are not ",
                          "as expected (", dim_in1string, ")"))
            }
        }
        ## Check first val compatibility.
        new_first_val <- .read_h5dataset_first_val(new_filepath,
                                                   object@name,
                                                   object_dim)
        if (!identical(new_first_val, object@first_val))
            stop(wmsg("first value in HDF5 dataset '", object@name, "' ",
                      "from file '", value, "' is not as expected"))

        ## Set new path.
        object@filepath <- new_filepath
        object
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### type() getter
###

### Override the default method (defined in the DelayedArray package) with
### a much faster one.
setMethod("type", "HDF5ArraySeed",
    function(x)
    {
        ## Prior to HDF5Array 1.15.6 HDF5ArraySeed objects didn't have
        ## the "type" slot.
        if (!.hasSlot(x, "type"))
            return(type(x@first_val))
        type <- x@type
        if (is.na(type))
            type <- get_h5mread_returned_type(x@filepath, x@name)
        type
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### dim() getter
###

### Does NOT access the file.
setMethod("dim", "HDF5ArraySeed", function(x) x@dim)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### dimnames() getter
###

### Does access the file!
setMethod("dimnames", "HDF5ArraySeed",
    function(x) h5readDimnames(x@filepath, x@name, as.character=TRUE)
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### extract_array()
###

### A thin wrapper around h5mread().
### TODO: Maybe we no longer need this. I mean, this is used in the
### extract_array() and extract_sparse_array() methods for HDF5ArraySeed
### objects but the 'index' passed to these methods should never contain
### RangeNSBS objects. So it's probably ok to get rid of this and to just
### use h5mread() instead.
.h5mread2 <- function(filepath, name, index=NULL,
                      as.integer=FALSE, as.sparse=FALSE)
{
    if (!is.null(index))
        index <- S4Arrays:::expand_Nindex_RangeNSBS(index)
    h5mread(filepath, name, starts=index,
            as.vector=FALSE, as.integer=as.integer, as.sparse=as.sparse)
}


.extract_array_from_HDF5ArraySeed <- function(x, index)
{
    ## Prior to HDF5Array 1.15.6 HDF5ArraySeed objects didn't have
    ## the "type" slot.
    if (!.hasSlot(x, "type"))
        return(.h5mread2(x@filepath, x@name, index))
    ## If the user requested a specific type when HDF5ArraySeed object 'x'
    ## was constructed then we must return an array of that type.
    as_int <- !is.na(x@type) && x@type == "integer"
    ans <- .h5mread2(x@filepath, x@name, index, as.integer=as_int)
    if (!is.na(x@type) && typeof(ans) != x@type)
        storage.mode(ans) <- x@type
    ans
}

setMethod("extract_array", "HDF5ArraySeed", .extract_array_from_HDF5ArraySeed)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### is_sparse(), extract_sparse_array(), and OLD_extract_sparse_array()
###

### Prior to HDF5Array 1.17.8 HDF5ArraySeed objects didn't have the
### "as_sparse" slot.
setMethod("is_sparse", "HDF5ArraySeed",
    function(x) .hasSlot(x, "as_sparse") && x@as_sparse
)

setReplaceMethod("is_sparse", "HDF5ArraySeed",
    function(x, value)
    {
        if (!isTRUEorFALSE(value))
            stop(wmsg("the supplied value must be TRUE or FALSE"))
        if (!.hasSlot(x, "as_sparse"))
            x <- updateObject(x, check=FALSE)
        x@as_sparse <- value
        x
    }
)

### Returns a COO_SparseArray object.
### TODO: Modify h5mread() so that it natively constructs and returns
### an SVT_SparseArray object when 'as.sparse=TRUE'.
.extract_sparse_array_from_HDF5ArraySeed <- function(x, index)
{
    if (!is_sparse(x))
        stop(wmsg("calling extract_sparse_array() on an HDF5ArraySeed ",
                  "object is supported only if the object is sparse"))
    ## Prior to HDF5Array 1.15.6 HDF5ArraySeed objects didn't have
    ## the "type" slot.
    if (!.hasSlot(x, "type"))
        return(.h5mread2(x@filepath, x@name, index, as.sparse=TRUE))
    ## If the user requested a specific type when HDF5ArraySeed object 'x'
    ## was constructed then we must return a COO_SparseArray object of
    ## that type.
    as_int <- !is.na(x@type) && x@type == "integer"
    ## .h5mread2(..., as.sparse=TRUE) returns a COO_SparseArray object.
    ans <- .h5mread2(x@filepath, x@name, index, as.integer=as_int,
                                         as.sparse=TRUE)
    if (!is.na(x@type) && type(ans) != x@type)
        type(ans) <- x@type
    ans
}

setMethod("extract_sparse_array", "HDF5ArraySeed",
    function(x, index)
    {
        coo <- .extract_sparse_array_from_HDF5ArraySeed(x, index)
        as(coo, "SVT_SparseArray")
    }
)

setMethod("OLD_extract_sparse_array", "HDF5ArraySeed",
    function(x, index)
    {
        coo <- .extract_sparse_array_from_HDF5ArraySeed(x, index)
        SparseArraySeed(coo@dim, coo@nzcoo, coo@nzdata, check=FALSE)
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### chunkdim() getter
###

### Does NOT access the file.
setMethod("chunkdim", "HDF5ArraySeed", function(x) x@chunkdim)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Constructor
###

HDF5ArraySeed <- function(filepath, name, as.sparse=FALSE, type=NA)
{
    if (!is(filepath, "H5File"))
        filepath <- normarg_h5_filepath(filepath)
    name <- normarg_h5_name(name)

    ## Check 'as.sparse'.
    if (!isTRUEorFALSE(as.sparse))
        stop(wmsg("'as.sparse' must be TRUE or FALSE"))

    ## Check 'type'
    if (!isSingleStringOrNA(type))
        stop(wmsg("'type' must be a single string or NA"))
    if (is.na(type)) {
        type <- as.character(type)
    } else if (type != "list") {
        tmp <- try(vector(type), silent=TRUE)
        if (inherits(tmp, "try-error") || !is.atomic(tmp))
            stop(wmsg("'type' must be an R atomic type ",
                      "(e.g. \"integer\") or \"list\""))
    }

    dim <- h5dim(filepath, name)
    chunkdim <- h5chunkdim(filepath, name, adjust=TRUE)
    first_val <- .read_h5dataset_first_val(filepath, name, dim)

    new2("HDF5ArraySeed", filepath=filepath,
                          name=name,
                          as_sparse=as.sparse,
                          type=type,
                          dim=dim,
                          chunkdim=chunkdim,
                          first_val=first_val)
}


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### updateObject()
###

setMethod("updateObject", "HDF5ArraySeed",
    function(object, ..., verbose=FALSE)
    {
        ## The "file" slot was renamed "filepath" in HDF5Array 1.7.3 (commit
        ## b30f4d4b).
        if (!.hasSlot(object, "filepath")) {
            return(new2("HDF5ArraySeed", filepath=object@file,
                                         name=object@name,
                                         type=type(object@first_val),
                                         dim=object@dim,
                                         first_val=object@first_val,
                                         check=FALSE))
        }
        ## The "chunkdim" slot was added in HDF5Array 1.7.7 (commit ef4c5b47).
        if (!.hasSlot(object, "chunkdim")) {
            return(new2("HDF5ArraySeed", filepath=object@filepath,
                                         name=object@name,
                                         type=type(object@first_val),
                                         dim=object@dim,
                                         first_val=object@first_val,
                                         check=FALSE))
        }
        ## The "type" slot was added in HDF5Array 1.15.6.
        if (!.hasSlot(object, "type")) {
            return(new2("HDF5ArraySeed", filepath=object@filepath,
                                         name=object@name,
                                         type=type(object@first_val),
                                         dim=object@dim,
                                         chunkdim=object@chunkdim,
                                         first_val=object@first_val,
                                         check=FALSE))
        }
        ## The "as_sparse" slot was added in HDF5Array 1.17.8.
        if (!.hasSlot(object, "as_sparse")) {
            return(new2("HDF5ArraySeed", filepath=object@filepath,
                                         name=object@name,
                                         type=object@type,
                                         dim=object@dim,
                                         chunkdim=object@chunkdim,
                                         first_val=object@first_val,
                                         check=FALSE))
        }
        object
    }
)