1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
\name{HDF5Array-class}
\docType{class}
\alias{class:HDF5Array}
\alias{HDF5Array-class}
\alias{HDF5Array}
\alias{DelayedArray,HDF5ArraySeed-method}
\alias{class:HDF5Matrix}
\alias{HDF5Matrix-class}
\alias{HDF5Matrix}
\alias{is_sparse<-,HDF5Array-method}
\alias{matrixClass,HDF5Array-method}
\alias{coerce,HDF5Array,HDF5Matrix-method}
\alias{coerce,HDF5Matrix,HDF5Array-method}
\alias{coerce,ANY,HDF5Matrix-method}
\title{HDF5 datasets as DelayedArray objects}
\description{
The HDF5Array class is a \link[DelayedArray]{DelayedArray} subclass
for representing and operating on a conventional (a.k.a. dense) HDF5
dataset.
All the operations available for \link[DelayedArray]{DelayedArray}
objects work on HDF5Array objects.
}
\usage{
## Constructor function:
HDF5Array(filepath, name, as.sparse=FALSE, type=NA)
}
\arguments{
\item{filepath}{
The path (as a single string or \link{H5File} object) to the HDF5 file
(\code{.h5} or \code{.h5ad}) where the dataset is located.
Note that you must create and use an \link{H5File} object if the HDF5
file to access is stored in an Amazon S3 bucket. See \code{?\link{H5File}}
for how to do this.
Also please note that \link{H5File} objects must NOT be used in the
context of parallel evaluation at the moment.
}
\item{name}{
The name of the dataset in the HDF5 file.
}
\item{as.sparse}{
Whether the HDF5 dataset should be flagged as sparse or not, that is,
whether it should be considered sparse (and treated as such) or not.
Note that HDF5 doesn't natively support sparse storage at the moment
so HDF5 datasets cannot be stored in a sparse format, only in a dense
one. However a dataset stored in a dense format can still contain a lot
of zeros. Using \code{as.sparse=TRUE} on such dataset will enable
some optimizations that can lead to a lower memory footprint (and
possibly better performance) when operating on the HDF5Array.
IMPORTANT NOTE: If the dataset is in the 10x Genomics format (i.e. if
it uses the HDF5-based sparse matrix representation from 10x Genomics),
you should use the \code{\link{TENxMatrix}()} constructor instead of
the \code{HDF5Array()} constructor.
}
\item{type}{
By default the \code{\link[DelayedArray]{type}} of the returned
object is inferred from the H5 datatype of the HDF5 dataset.
This can be overridden by specifying the \code{type} argument.
The specified type must be an \emph{R atomic type} (e.g.
\code{"integer"}) or \code{"list"}.
}
}
\value{
An HDF5Array (or HDF5Matrix) object. (Note that HDF5Matrix extends HDF5Array.)
}
\note{
The "1.3 Million Brain Cell Dataset" and other datasets published by
10x Genomics use an HDF5-based sparse matrix representation instead
of the conventional (a.k.a. dense) HDF5 representation.
If your dataset uses the conventional (a.k.a. dense) HDF5 representation,
use the \code{HDF5Array()} constructor documented here.
But if your dataset uses the HDF5 sparse matrix representation from
10x Genomics, use the \code{\link{TENxMatrix}()} constructor instead.
}
\seealso{
\itemize{
\item \link{H5File} objects.
\item \link{H5SparseMatrix} objects for representing HDF5 sparse matrices
as \link[DelayedArray]{DelayedMatrix} objects.
\item \link{H5ADMatrix} objects for representing h5ad central
matrices (or matrices in the \code{/layers} group)
as \link[DelayedArray]{DelayedMatrix} objects.
\item \link{TENxMatrix} objects for representing 10x Genomics
datasets as \link[DelayedArray]{DelayedMatrix} objects.
\item \link{ReshapedHDF5Array} objects for representing HDF5 datasets
as \link[DelayedArray]{DelayedArray} objects with a user-supplied
upfront virtual reshaping.
\item \link[DelayedArray]{DelayedArray} objects in the \pkg{DelayedArray}
package.
\item \code{\link{writeHDF5Array}} for writing an array-like object
to an HDF5 file.
\item \link{HDF5-dump-management} for controlling the location and
physical properties of automatically created HDF5 datasets.
\item \code{\link{saveHDF5SummarizedExperiment}} and
\code{\link{loadHDF5SummarizedExperiment}} in this
package (the \pkg{HDF5Array} package) for saving/loading
an HDF5-based \link[SummarizedExperiment]{SummarizedExperiment}
object to/from disk.
\item The \link{HDF5ArraySeed} helper class.
\item \code{\link{h5ls}} to list the content of an HDF5 file (\code{.h5}
or \code{.h5ad}).
}
}
\examples{
## ---------------------------------------------------------------------
## A. CONSTRUCTION
## ---------------------------------------------------------------------
## With a local file:
toy_h5 <- system.file("extdata", "toy.h5", package="HDF5Array")
h5ls(toy_h5)
HDF5Array(toy_h5, "M2")
HDF5Array(toy_h5, "M2", type="integer")
HDF5Array(toy_h5, "M2", type="complex")
## With a file stored in an Amazon S3 bucket:
if (Sys.info()[["sysname"]] != "Darwin") {
public_S3_url <-
"https://rhdf5-public.s3.eu-central-1.amazonaws.com/rhdf5ex_t_float_3d.h5"
h5file <- H5File(public_S3_url, s3=TRUE)
h5ls(h5file)
HDF5Array(h5file, "a1")
}
## ---------------------------------------------------------------------
## B. BASIC MANIPULATION
## ---------------------------------------------------------------------
library(h5vcData)
tally_file <- system.file("extdata", "example.tally.hfs5",
package="h5vcData")
h5ls(tally_file)
## Pick up "Coverages" dataset for Human chromosome 16:
name <- "/ExampleStudy/16/Coverages"
cvg <- HDF5Array(tally_file, name)
cvg
is(cvg, "DelayedArray") # TRUE
seed(cvg)
path(cvg)
chunkdim(cvg)
## The data in the dataset looks sparse. In this case it is recommended
## to set 'as.sparse' to TRUE when constructing the HDF5Array object.
## This will make block processing (used in operations like sum()) more
## memory efficient and likely faster:
cvg0 <- HDF5Array(tally_file, name, as.sparse=TRUE)
is_sparse(cvg0) # TRUE
## Note that we can also flag the HDF5Array object as sparse after
## creation:
is_sparse(cvg) <- TRUE
cvg # same as 'cvg0'
## dim/dimnames:
dim(cvg0)
dimnames(cvg0)
dimnames(cvg0) <- list(paste0("s", 1:6), c("+", "-"), NULL)
dimnames(cvg0)
## ---------------------------------------------------------------------
## C. SLICING (A.K.A. SUBSETTING)
## ---------------------------------------------------------------------
cvg1 <- cvg0[ , , 29000001:29000007]
cvg1
dim(cvg1)
as.array(cvg1)
stopifnot(identical(dim(as.array(cvg1)), dim(cvg1)))
stopifnot(identical(dimnames(as.array(cvg1)), dimnames(cvg1)))
cvg2 <- cvg0[ , "+", 29000001:29000007]
cvg2
as.matrix(cvg2)
## ---------------------------------------------------------------------
## D. SummarizedExperiment OBJECTS WITH DELAYED ASSAYS
## ---------------------------------------------------------------------
## DelayedArray objects can be used inside a SummarizedExperiment object
## to hold the assay data and to delay operations on them.
library(SummarizedExperiment)
pcvg <- cvg0[ , 1, ] # coverage on plus strand
mcvg <- cvg0[ , 2, ] # coverage on minus strand
nrow(pcvg) # nb of samples
ncol(pcvg) # length of Human chromosome 16
## The convention for a SummarizedExperiment object is to have 1 column
## per sample so first we need to transpose 'pcvg' and 'mcvg':
pcvg <- t(pcvg)
mcvg <- t(mcvg)
se <- SummarizedExperiment(list(pcvg=pcvg, mcvg=mcvg))
se
stopifnot(validObject(se, complete=TRUE))
## A GPos object can be used to represent the genomic positions along
## the dataset:
gpos <- GPos(GRanges("16", IRanges(1, nrow(se))))
gpos
rowRanges(se) <- gpos
se
stopifnot(validObject(se))
assays(se)$pcvg
assays(se)$mcvg
}
\keyword{classes}
\keyword{methods}
|