1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
#
# Reference:
# A hypergraph model for the yeast protein complex network
# By E. Ramadan, A. Tarafdar, A. Pothen
# Procs. Workshop High Performance Computational Biology, IEEE/ACM 2004
#
# algorithm for computing the k-core of a hypergraph:
# ===================================================
#
# while there are vertices with degree < k do
# {
# for each such vertex v do
# {
# for each hyperedge f associated with v do
# {
# delet v from adj(f)
# decrement d(f) by 1
# if f is non-maximal then
# {
# for each vertex w associated with f do
# {
# delete f from adj(w)
# decrement d(w) by 1
# if ( d(w) < k then
# {
# include w in list of vertices with degree < k
# }
# }
# }
# }
# }
# }
#
kCoresHypergraph <- function(hg)
{
nv <- numNodes(hg)
core <- array(0, nv, dimnames = list(nodes(hg)))
im <- inciMat(hg)
ne <- ncol(im)
v_deg <- sort(rowSums(im))
k_num <- 0
for ( i in 1:nv )
{
v <- names(v_deg)[i]
k_num <- max(v_deg[v], k_num)
core[v] <- k_num
# v's hyperedges
he_set <- which(im[v,] == 1)
im[v, he_set] <- 0
# remove non-maximal hyperedges
# (1) selective approach
for ( f in names(he_set) )
{
# hyperedges adjacent to f
r_chosen <- which(im[, f] == 1)
c_chosen <- which(im[r_chosen, ] > 0)
im_sub <- matrix(im[r_chosen, c_chosen], nrow=length(r_chosen), ncol=length(c_chosen))
rownames(im_sub) <- names(r_chosen)
colnames(im_sub) <- names(c_chosen)
for ( g in names(c_chosen) )
if ( f != g && im_sub[, f] == im_sub[, g] )
{
im[, f] <- 0
}
}
v_deg <- sort(rowSums(im))
## # (2) brute-force approach
## for ( f in he_set )
## {
## for ( g in 1:ne )
## if ( f != g && sum(im[, f] & im[, g]) == sum(im[, f]) )
## {
## im[, f] <- 0
## }
## }
## v_deg <- sort(rowSums(im))
}
core
}
#
# greedy algorithm for computing an approximate minimum weight vertex
# cover of a hypergraph
# ===================================================================
#
# F[i] is the set of hy[eredges not yet covered by a partial vertex cover
# at the begining of the i-th iteration
#
# cost function alpha(v) = w(v) / | adj(v) intersect F[i] |
# which distributes the weight of the vertex equally among the hyperedges
# it belongs to that are currently uncovered.
#
# at each step, it chooses a vertex with minimum cost alpha(v) to include
# in the partial cover, deletes all hyperedges it covers
#
# initialize:
# i = 1; // iteration number
# C = 0; // cover
# F[1] = F;
# // hyperedges yet to be covered
# while F[i] != 0 do
# {
# for ( v in V - C ) do
# {
# choose a vectex v[i] with min cost alpha(v);
# add v[i] to the cover C;
# F[i+1] = F[i] - adj(v[i]);
# i = i+1;
# }
# }
#
vCoverHypergraph <- function(hg, vW=rep(1, numNodes(hg)))
{
V <- nodes(hg)
im <- inciMat(hg)
names(vW) <- V
deg <- rowSums(im)
C <- names(which(deg == 0))
F <- setdiff(V, C)
while ( length(F) > 1 )
{
# choose a vectex v[i] with min cost alpha(v)
deg <- rowSums(im)
vW_cur <- vW / deg
v <- names(which.min(vW_cur))
C <- c(C, v)
adj_he <- names(which(im[v,] == 1))
im[v, ] <- 0
im[, adj_he] <- 0
r_chosen <- names(which(rowSums(im) > 0))
c_chosen <- names(which(colSums(im) > 0))
im <- im[r_chosen, c_chosen, drop = FALSE]
vW <- vW[r_chosen]
F <- r_chosen
}
C
}
|