1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
\name{ssea.analyze.randgenes}
\alias{ssea.analyze.randgenes}
\title{
Estimate enrichment from randomized genes
}
\description{
\code{\link{ssea.analyze.randgenes}} simulates enrichment scores by
randomizing the genes from all modules (from database - db)
}
\usage{
ssea.analyze.randgenes(db, targets, gene_sel)
}
\arguments{
\item{db}{
database including the indexed identities for modules, genes and markers:
\preformatted{
modulesizes: gene counts for modules.
modulelengths: distinct marker counts for modules.
moduledensities: ratio between distinct and non-distinct
markers.
genesizes: marker count for each gene.
module2genes: gene lists for each module.
gene2loci: marker lists for each gene .
locus2row: row indices in the marker data frame for each
marker.
observed: matrix of observed counts of values that exceed
each quantile point for each marker.
expected: 1.0 - quantile points.
}
}
\item{targets}{all modules}
\item{gene_sel}{selected genes to be trimmed away to avoid signal inflation
of null background in gene permutation.
}
}
\value{
\item{scores }{randomly simulated enrichment scores}
}
\examples{
job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata",
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata",
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata",
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000
## ssea.start() process takes long time while merging the genes sharing high
## amounts of markers (e.g. loci). it is performed with full module list in
## the vignettes. Here, we used a very subset of the module list (1st 10 mods
## from the original module file) and we collected the corresponding genes
## and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE,
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER,
unique(gendata$MARKER)))),]
## save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
## run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)
## Observed enrichment scores.
db <- job.msea$database
gene2loci <- db$gene2loci
locus2row <- db$locus2row
observed <- db$observed
#Calcuate individual gene enrichment score
trim_scores <- rep(NA, length(gene2loci))
for(k in 1:length(trim_scores)) {
genes <- k
# Collect markers.
loci <- integer()
for(i in genes)
loci <- c(loci, gene2loci[[i]])
# Determine data rows.
loci <- unique(loci)
rows <- locus2row[loci]
nloci <- length(rows)
# Calculate total counts.
e <- (nloci/length(locus2row))*colSums(observed)
o <- observed[rows,]
if(nloci > 1) o <- colSums(o)
# Estimate enrichment.
trim_scores[k] <- ssea.analyze.statistic(o, e)
}
trim_start=0.002 # default
trim_end=1-trim_start
cutoff=as.numeric(quantile(trim_scores,probs=c(trim_start,trim_end)))
gene_sel=which(trim_scores>cutoff[1]&trim_scores<cutoff[2])
scores <- ssea.analyze.observe(db)
nmods <- length(scores)
## Simulated scores.
nperm <- job.msea$nperm
observ <- scores
## Include only non-empty modules for simulation.
nmods <- length(db$modulesizes)
targets <- which(db$modulesizes > 0)
hits <- rep(NA, nmods)
hits[targets] <- 0
## Prepare data structures to hold null samples.
keys <- rep(0, nperm)
scores <- rep(NA, nperm)
scoresets <- list()
for(i in 1:nmods) scoresets[[i]] <- double()
## Simulate random scores.
## within a for loop: check capacity, find new statistics, update snull
## distribution (simulated null distr.) by permuting genes
snull <- ssea.analyze.randgenes(db, targets, gene_sel)
## Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")
}
\references{
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD,
Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X.
Mergeomics: multidimensional data integration to identify pathogenic
perturbations to biological systems. BMC genomics. 2016;17(1):874.
}
\author{
Ville-Petteri Makinen
}
\seealso{
\code{\link{ssea.analyze}}
}
|