1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/dimensionality_reduction.R
\name{plot_dimred}
\alias{plot_dimred}
\title{Plot dimensionality reduction based on MOFA factors}
\usage{
plot_dimred(
object,
method = c("UMAP", "TSNE"),
groups = "all",
show_missing = TRUE,
color_by = NULL,
shape_by = NULL,
color_name = NULL,
shape_name = NULL,
label = FALSE,
dot_size = 1.5,
stroke = NULL,
alpha_missing = 1,
legend = TRUE,
rasterize = FALSE,
return_data = FALSE,
...
)
}
\arguments{
\item{object}{a trained \code{\link{MOFA}} object.}
\item{method}{string indicating which method has been used for non-linear dimensionality reduction (either 'umap' or 'tsne')}
\item{groups}{character vector with the groups names, or numeric vector with the indices of the groups of samples to use, or "all" to use samples from all groups.}
\item{show_missing}{logical indicating whether to include samples for which \code{shape_by} or \code{color_by} is missing}
\item{color_by}{specifies groups or values used to color the samples. This can be either:
(1) a character giving the name of a feature present in the training data.
(2) a character giving the same of a column present in the sample metadata.
(3) a vector of the same length as the number of samples specifying discrete groups or continuous numeric values.}
\item{shape_by}{specifies groups or values used to shape the samples. This can be either:
(1) a character giving the name of a feature present in the training data,
(2) a character giving the same of a column present in the sample metadata.
(3) a vector of the same length as the number of samples specifying discrete groups.}
\item{color_name}{name for color legend.}
\item{shape_name}{name for shape legend.}
\item{label}{logical indicating whether to label the medians of the clusters. Only if color_by is specified}
\item{dot_size}{numeric indicating dot size.}
\item{stroke}{numeric indicating the stroke size (the black border around the dots, default is NULL, infered automatically).}
\item{alpha_missing}{numeric indicating dot transparency of missing data.}
\item{legend}{logical indicating whether to add legend.}
\item{rasterize}{logical indicating whether to rasterize plot using \code{\link[ggrastr]{geom_point_rast}}}
\item{return_data}{logical indicating whether to return the long data frame to plot instead of plotting}
\item{...}{extra arguments passed to \code{\link{run_umap}} or \code{\link{run_tsne}}.}
}
\value{
Returns a \code{ggplot2} object or a long data.frame (if return_data is TRUE)
}
\description{
Plot dimensionality reduction based on MOFA factors
}
\details{
This function plots dimensionality reduction projections that are stored in the \code{dim_red} slot.
Typically this contains UMAP or t-SNE projections computed using \code{\link{run_tsne}} or \code{\link{run_umap}}, respectively.
}
\examples{
# Using an existing trained model on simulated data
file <- system.file("extdata", "model.hdf5", package = "MOFA2")
model <- load_model(file)
# Run UMAP
model <- run_umap(model)
# Plot UMAP
plot_dimred(model, method = "UMAP")
# Plot UMAP, colour by Factor 1 values
plot_dimred(model, method = "UMAP", color_by = "Factor1")
# Plot UMAP, colour by the values of a specific feature
plot_dimred(model, method = "UMAP", color_by = "feature_0_view_0")
}
|