1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
library(tidyverse)
library(VariantAnnotation)
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)
library("TxDb.Hsapiens.UCSC.hg19.knownGene")
vcf_files <- list.files(system.file("extdata", package = "MutationalPatterns"),
pattern = "sample.vcf", full.names = TRUE
)
sample_names <- c(
"colon1", "colon2", "colon3",
"intestine1", "intestine2", "intestine3",
"liver1", "liver2", "liver3"
)
# Create grl
grl <- read_vcfs_as_granges(vcf_files, sample_names, ref_genome)
saveRDS(grl, "inst/states/read_vcfs_as_granges_output.rds")
# Create snvs
mut_mat <- mut_matrix(grl, ref_genome)
saveRDS(mut_mat, "inst/states/mut_mat_data.rds")
mut_mat_extended <- mut_matrix(grl, ref_genome, extension = 2)
saveRDS(mut_mat_extended, "inst/states/mut_mat_data_extended.rds")
# Create transcription strand matrix
genes_hg19 <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)
mut_mat_s <- mut_matrix_stranded(grl, ref_genome, genes_hg19)
saveRDS(mut_mat_s, "inst/states/mut_mat_s_data.rds")
# Create replication direction
repli_file <- system.file("extdata/ReplicationDirectionRegions.bed",
package = "MutationalPatterns"
)
repli_strand <- read.table(repli_file, header = TRUE)
repli_strand_granges <- GRanges(
seqnames = repli_strand$Chr,
ranges = IRanges(
start = repli_strand$Start + 1,
end = repli_strand$Stop
),
strand_info = repli_strand$Class
)
seqlevelsStyle(repli_strand_granges) <- "UCSC"
saveRDS(repli_strand_granges, "inst/states/repli_strand.rds")
# Create replication strand matrix
mut_mat_repli <- mut_matrix_stranded(grl, ref_genome, repli_strand_granges, mode = "replication")
saveRDS(mut_mat_repli, "inst/states/mut_mat_repli.rds")
# Extract signatures
nmf_res <- extract_signatures(mut_mat, rank = 2)
saveRDS(nmf_res, "inst/states/nmf_res_data.rds")
nmf_res_strand <- extract_signatures(mut_mat_s, rank = 2)
saveRDS(nmf_res_strand, "inst/states/nmf_res_strand_data.rds")
# Get signatures
signatures <- get_known_signatures()
# Normal refit
fit_res <- fit_to_signatures(mut_mat, signatures)
saveRDS(fit_res, "inst/states/snv_refit.rds")
# Strict refit
strict_refit <- fit_to_signatures_strict(mut_mat, signatures, max_delta = 0.05)
saveRDS(strict_refit$fit_res, "inst/states/strict_snv_refit.rds")
strict_refit_best <- fit_to_signatures_strict(mut_mat, signatures[,1:5], max_delta = 0.004, method = "best_subset")
saveRDS(strict_refit_best$fit_res, "inst/states/strict_best_snv_refit.rds")
# bootstrapped refit
set.seed(42)
contri_boots <- fit_to_signatures_bootstrapped(mut_mat, signatures, n_boots = 2, max_delta = 0.05)
saveRDS(contri_boots, "inst/states/bootstrapped_snv_refit.rds")
# Calculate lesion segregation
lesion_segretation <- calculate_lesion_segregation(grl[1:2], sample_names[1:2])
saveRDS(lesion_segretation, "inst/states/lesion_segregation.rds")
# Split mutation types
# Read in genomic regions
CTCF_g <- readRDS(system.file("states/CTCF_g_data.rds",
package = "MutationalPatterns"
))
promoter_g <- readRDS(system.file("states/promoter_g_data.rds",
package = "MutationalPatterns"
))
flanking_g <- readRDS(system.file("states/promoter_flanking_g_data.rds",
package = "MutationalPatterns"
))
# Combine the regions into a single GRangesList
regions <- GRangesList(promoter_g, flanking_g, CTCF_g)
names(regions) <- c("Promoter", "Promoter flanking", "CTCF")
seqlevelsStyle(regions) <- "UCSC"
# Read in some variants.
grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds",
package = "MutationalPatterns"
))
grl_split <- split_muts_region(grl, regions)
saveRDS(grl_split, "inst/states/grl_split_region.rds")
mut_mat_split_region <- mut_matrix(grl_split, ref_genome)
saveRDS(mut_mat_split_region, "inst/states/mut_mat_splitregions.rds")
mut_mat_longregion <- lengthen_mut_matrix(mut_mat_split_region)
saveRDS(mut_mat_longregion, "inst/states/mut_mat_longregions.rds")
# Create context potential damage tibble
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
contexts = rownames(mut_mat)[1:6]
gene_ids = c(7157)
context_mismatches = context_potential_damage_analysis(contexts, txdb, ref_genome, gene_ids)
saveRDS(context_mismatches, "inst/states/context_mismatches.rds")
# Specifiy the chromosomes of interest.
chromosomes <- names(genome(grl)[1:3])
regional_sims = determine_regional_similarity(unlist(grl), ref_genome, chromosomes, window_size = 40, stepsize = 10, max_window_size_gen = 40000000)
saveRDS(regional_sims, "inst/states/regional_sims.rds")
|