1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
\name{subrcModels}
\alias{subrcModelPLM}
\alias{subrcModelWPLM}
\alias{subrcModelMedianPolish}
\title{Fit row-column model to a matrix}
\description{These functions fit row-column effect models to matrices
}
\usage{
subrcModelPLM(y, group.labels,row.effects=NULL,input.scale=NULL)
%subrcModelWPLM(y, w,row.effects=NULL,input.scale=NULL)
subrcModelMedianPolish(y, group.labels)
}
\arguments{
\item{y}{A numeric matrix}
\item{group.labels}{A vector to be treated as a factor variable. This
is used to assign each row to a group. NA values should be used to
exclude rows from consideration}
% \item{w}{A matrix or vector of weights. These should be non-negative.}
\item{row.effects}{If these are supplied then the fitting procedure
uses these (and analyzes individual columns separately)}
\item{input.scale}{If supplied will be used rather than estimating the
scale from the data}
}
\value{
A list with following items:
\item{Estimates}{The parameter estimates. Stored in column effect then
row effect order}
\item{Weights}{The final weights used}
\item{Residuals}{The residuals}
\item{StdErrors}{Standard error estimates. Stored in column effect
then row effect order}
\item{Scale}{Scale Estimates}
}
\details{
These functions fit row-column models to the specified input
matrix. Specifically the model \deqn{y_{ij} = r_i + c_j +
\epsilon_{ij}}{y_ij = r_i + c_j + e_ij}
with \eqn{r_i} and \eqn{c_j} as row and column effects
respectively. Note that this functions treat the row effect as
the parameter to be constrained using sum to zero (for
\code{rcModelPLM} and \code{rcModelWPLM}) or median of zero (for
\code{rcModelMedianPolish}).
The \code{rcModelPLM} and \code{rcModelWPLM} functions use a
robust linear model procedure for fitting the model.
The function \code{rcModelMedianPolish} uses the median polish algorithm.
}
\seealso{\link{rcModelPLM}}
\examples{
y <- matrix(c(10+rnorm(50),20+rnorm(50)),20,5,byrow=TRUE)
subrcModelPLM(y,c(rep(1,10),rep(2,10)))
subrcModelMedianPolish(y,c(rep(1,10),rep(2,10)))
col.effects <- c(10,11,10.5,12,9.5)
row.effects <- c(seq(-0.5,-0.1,by=0.1),seq(0.1,0.5,by=0.1))
y <- outer(row.effects, col.effects,"+")
w <- runif(50)
rcModelPLM(y)
rcModelWPLM(y, w)
rcModelMedianPolish(y)
y <- y + rnorm(50)
rcModelPLM(y)
rcModelWPLM(y, w)
rcModelMedianPolish(y)
rcModelPLM(y,row.effects=row.effects)
rcModelWPLM(y,w,row.effects=row.effects)
rcModelPLM(y,input.scale=1.0)
rcModelWPLM(y, w,input.scale=1.0)
rcModelPLM(y,row.effects=row.effects,input.scale=1.0)
rcModelWPLM(y,w,row.effects=row.effects,input.scale=1.0)
}
\author{B. M. Bolstad \email{bmb@bmbolstad.com}}
\keyword{models}
|