1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
### =========================================================================
### Dim tuning utilities
### -------------------------------------------------------------------------
###
### "Dim tuning" is the act of adding and/or dropping "ineffective
### dimensions" to/from an array-like object, typically via the drop()
### and/or dim() setter. The exact transformation to operate on the vector
### of dimensions of the object can be precisely described by supplying
### a 'dim_tuner' vector.
### See src/dim_tuning_utils.c for additional information.
### NOT exported but used in the DelayedArray package!
normalize_dim_replacement_value <- function(value, x_dim)
{
if (is.null(value))
stop(wmsg("you can't do that, sorry"))
if (!is.numeric(value))
stop(wmsg("the supplied dim vector must be numeric"))
if (length(value) == 0L)
stop(wmsg("the supplied dim vector cannot be empty"))
if (!is.integer(value))
value <- as.integer(value)
if (S4Vectors:::anyMissingOrOutside(value, 0L))
stop(wmsg("the supplied dim vector cannot contain negative ",
"or NA values"))
prod1 <- prod(value)
prod2 <- prod(x_dim)
if (prod1 != prod2)
stop(wmsg("the supplied dims [product ", prod1, "] do not match ",
"the length of object [", prod2, "]"))
value
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### The tune_Array_dims() low-level generic
###
### Array derivatives (e.g. SparseArray or DelayedArray objects) only need
### to implement a tune_Array_dims() method to have drop() and the dim()
### setter work out-of-the-box.
###
### Note that a "dim tuning" operation does NOT change the length of the
### object (which is prod(dim(x))) or alter its content, and should always
### be reversible (except when it drops ineffective dimensions with dimnames
### on them). To revert a "dim tuning" operation, simply tune again
### with '-dim_tuner' (i.e. with minus 'dim_tuner'). More precisely, for
### tune_Array_dims(), 'x2' should always be identical to 'x' here:
###
### y <- tune_Array_dims(x, dim_tuner)
### x2 <- tune_Array_dims(y, -dim_tuner)
### identical(x2, x) # should be TRUE
###
### This should be the case for any array-like object 'x' (with no dimnames
### on its ineffective dimensions) and any 'dim_tuner' vector compatible
### with 'dim(x)'.
setGeneric("tune_Array_dims", signature="x",
function(x, dim_tuner) standardGeneric("tune_Array_dims")
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### tune_dims() and tune_dimnames()
###
### NOT exported but used by the tune_Array_dims() method for SVT_SparseArray
### objects defined in the SparseArray package.
tune_dims <- function(dim, dim_tuner)
{
stopifnot(is.integer(dim),
is.integer(dim_tuner))
.Call2("C_tune_dims", dim, dim_tuner, PACKAGE="S4Arrays")
}
tune_dimnames <- function(dimnames, dim_tuner)
{
stopifnot(is.null(dimnames) || is.list(dimnames),
is.integer(dim_tuner))
.Call2("C_tune_dimnames", dimnames, dim_tuner, PACKAGE="S4Arrays")
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### drop() method
###
### base::drop() is kind of messed up in the 1D case. This is a replacement
### that does the right thing.
### NOT exported but used in the SparseArray package!
drop_even_if_1D <- function(a)
{
stopifnot(is.array(a) || is.vector(a))
if (length(dim(a)) != 1L)
return(base::drop(a))
setNames(as.vector(a), names(a))
}
### Expected to be semantically equivalent to 'drop_even_if_1D(as.array(x))'.
### Will work out-of-the-box on any Array derivative that supports
### tune_Array_dims() and as.array(). Note that the latter is used
### only if 'x' has at most one effective dimension.
.drop_Array <- function(x)
{
if (!isS4(x)) {
## Avoid S4 dispatch on Array objects that are not S4 objects (e.g.
## Array objects from the arrow package).
return(base::drop(x))
}
is_effective <- dim(x) != 1L
if (sum(is_effective) <= 1L)
return(drop_even_if_1D(as.array(x))) # ordinary vector
dim_tuner <- -as.integer(!is_effective)
tune_Array_dims(x, dim_tuner)
}
setMethod("drop", "Array", .drop_Array)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### dim() setter
###
.diff_dims <- function(old_dim, new_dim, x_class)
{
stopifnot(is.integer(old_dim), is.integer(new_dim))
cannot_map_msg <- c(
"Cannot map the supplied dim vector to the current dimensions of ",
"the object. On a ", x_class, " object, the dim() setter can only ",
"be used to drop and/or add \"ineffective dimensions\" (i.e. ",
"dimensions equal to 1) to the object."
)
can_map_effective_dimensions <- function(effdim_idx1, effdim_idx2) {
if (length(effdim_idx1) != length(effdim_idx2))
return(FALSE)
if (length(effdim_idx1) == 0L)
return(TRUE)
all(old_dim[effdim_idx1] == new_dim[effdim_idx2])
}
## Get index of old and new effective dimensions.
effdim_idx1 <- which(old_dim != 1L)
effdim_idx2 <- which(new_dim != 1L)
if (!can_map_effective_dimensions(effdim_idx1, effdim_idx2))
stop(wmsg(cannot_map_msg))
compute_dim_tuner <- function(effdim_idx1, effdim_idx2) {
idx1 <- c(effdim_idx1, length(old_dim) + 1L)
idx2 <- c(effdim_idx2, length(new_dim) + 1L)
diffs1 <- S4Vectors:::diffWithInitialZero(idx1)
diffs2 <- S4Vectors:::diffWithInitialZero(idx2)
deltas <- pmax(diffs1, diffs2)
nonzero_runlengths <- deltas - 1L
ans_len <- sum(nonzero_runlengths) + length(effdim_idx1)
ans <- integer(ans_len)
offsets <- c(0L, head(cumsum(deltas), n=-1L))
for (k in seq_along(idx1)) {
d <- diffs2[[k]] - diffs1[[k]]
op <- ifelse(d > 0L, 1L, -1L)
ans[offsets[[k]] + seq_len(abs(d))] <- rep.int(op, abs(d))
}
ans
}
compute_dim_tuner(effdim_idx1, effdim_idx2)
}
.set_Array_dim <- function(x, value)
{
x_dim <- dim(x)
value <- normalize_dim_replacement_value(value, x_dim)
dim_tuner <- .diff_dims(x_dim, value, class(x))
ans <- tune_Array_dims(x, dim_tuner)
stopifnot(identical(dim(ans), value)) # sanity check
ans
}
setReplaceMethod("dim", "Array", .set_Array_dim)
|