File: extract_array.R

package info (click to toggle)
r-bioc-s4arrays 1.6.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 476 kB
  • sloc: ansic: 730; makefile: 2
file content (391 lines) | stat: -rw-r--r-- 14,732 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
### =========================================================================
### extract_array()
### -------------------------------------------------------------------------
###


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Low-level helpers
###

### Return the slice as a list.
.extract_data_frame_slice <- function(x, index)
{
    slice <- subset_by_Nindex(x, index)
    ## Turn into a list and replace factors with character vectors.
    lapply(slice, as.vector)
}

.extract_DataFrame_slice0 <- function(x)
{
    ## Make sure that this remains consistent with .get_DataFrame_type()
    ## defined in R/type.R
    x0 <- x[0L, , drop=FALSE]
    df0 <- as.data.frame(x0)
    if (ncol(df0) != ncol(x))
        stop(wmsg("DataFrame object 'x' can be used as the seed of ",
                  "a DelayedArray object only if as.data.frame(x) ",
                  "preserves the number of columns"))
    BiocGenerics:::extract_data_frame_slice0(df0)
}

.extract_DataFrame_slice <- function(x, index)
{
    slice <- subset_by_Nindex(x, index)
    slice <- as.data.frame(slice)
    ## Turn into a list and replace factors with character vectors.
    lapply(slice, as.vector)
}


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### extract_array() generic and methods
###
### Note that extract_array() is part of the "seed contract" as defined in
### the "Implementing A DelayedArray Backend" vignette from the DelayedArray
### package.

### Similar to SparseArray:::.contact_author_msg2().
.contact_author_msg1 <- function(.Generic, x_class)
{
    msg <- c("Please contact the authors/maintainers of the ",
             x_class, " class")
    class_package <- attr(x_class, "package")
    if (!is.null(class_package))
        msg <- c(msg, " (defined in the ", class_package, " package)")
    c(msg, " about this, and point them to the man page for the ",
           .Generic, "() generic function defined in the S4Arrays ",
           "package ('?S4Arrays::", .Generic, "').")
}

check_returned_array <- function(ans, expected_dim, .Generic, x_class)
{
    if (!is.array(ans))
        stop(wmsg("The ", .Generic, "() method for ", x_class, " ",
                  "objects didn't return an ordinary array. ",
                  .Generic, "() methods should **always** return an ",
                  "ordinary array. ",
                  .contact_author_msg1(.Generic, x_class)))
    if (!identical(dim(ans), expected_dim))
        stop(wmsg("The ", .Generic, "() method for ", x_class, " ",
                  "objects returned an array with incorrect ",
                  "dimensions. ", .contact_author_msg1(.Generic, x_class)))
    ans
}

### 'index' is expected to be an unnamed list of subscripts as positive
### integer vectors, one vector per dimension in 'x'. *Missing* list elements
### are allowed and represented by NULLs.
### The extract_array() methods don't need to support anything else.
### They must return an ordinary array. No need to propagate the dimnames.
setGeneric("extract_array", signature="x",
    function(x, index)
    {
        x_dim <- dim(x)
        if (is.null(x_dim))
            stop(wmsg("the first argument to extract_array() must be an ",
                      "array-like object (i.e. it must have dimensions)"))
        ans <- standardGeneric("extract_array")
        expected_dim <- get_Nindex_lengths(index, x_dim)
        check_returned_array(ans, expected_dim, "extract_array", class(x))
    }
)

### subset_by_Nindex() uses `[` internally to perform the subsetting, so
### this default extract_array() method will work on any object 'x' that
### supports `[` and as.array().
setMethod("extract_array", "ANY",
    function(x, index)
    {
        slice <- subset_by_Nindex(x, index)
        as.array(slice)
    }
)

setMethod("extract_array", "array",
    function(x, index) subset_by_Nindex(x, index)
)

### Equivalent to
###
###     subset_by_Nindex(as.matrix(x), index)
###
### but avoids the cost of turning the full data frame 'x' into a matrix so
### memory footprint stays small when 'index' is small.
setMethod("extract_array", "data.frame",
    function(x, index)
    {
        slice0 <- BiocGenerics:::extract_data_frame_slice0(x)
        slice <- .extract_data_frame_slice(x, index)
        data <- unlist(c(slice0, slice), recursive=FALSE, use.names=FALSE)
        array(data, dim=get_Nindex_lengths(index, dim(x)))
    }
)

### Equivalent to
###
###     subset_by_Nindex(as.matrix(as.data.frame(x)), index)
###
### but avoids the cost of turning the full DataFrame 'x' first into a data
### frame then into a matrix so memory footprint stays small when 'index' is
### small.
setMethod("extract_array", "DataFrame",
    function(x, index)
    {
        slice0 <- .extract_DataFrame_slice0(x)
        slice <- .extract_DataFrame_slice(x, index)
        data <- unlist(c(slice0, slice), recursive=FALSE, use.names=FALSE)
        array(data, dim=get_Nindex_lengths(index, dim(x)))
    }
)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### A convenience wrapper around extract_array()
###

### An enhanced version of extract_array() that accepts an Nindex (see
### Nindex-utils.R) and propagates the dimnames.
### WARNING: The list elements in 'Nindex' can only be NULLs, integer
### vectors, or RangeNSBS objects at the moment. extract_array_by_Nindex()
### will break if they are not! See FIXME below.
extract_array_by_Nindex <- function(x, Nindex)
{
    ## TODO: Once we have a full Nindex normalization mechanism in place
    ## (see FIXME below), use it to normalize the supplied 'Nindex' in 2
    ## steps: (1) by normalizing with something like 'as.NSBSlist=TRUE'
    ## to produce an Nindex with NSBS list elements, then (2) by doing
    ## something like:
    ##
    ##   lapply( , function(i) if (is.null(i)) NULL else as.integer(i))
    ##
    ## on the Nindex obtained at (1).
    ## Pass the Nindex obtained at (1) to subset_dimnames_by_Nindex() and
    ## the Nindex obtained at (2) to extract_array().
    ans_dimnames <- subset_dimnames_by_Nindex(dimnames(x), Nindex)

    ## FIXME: The list elements of an Nindex can be anything (see
    ## Nindex-utils.R) so it's not enough to expand only those list elements
    ## that are RangeNSBS objects. For example the call to extract_array()
    ## below will fail if some subscripts in 'Nindex' are character vectors
    ## or Rle objects. We need to perform a full normalization of 'Nindex'
    ## like we do in new_DelayedSubset() (see DelayedOp-class.R). Note that
    ## we're good for now because extract_array_by_Nindex() is only used
    ## in the context of show_compact_array() and the default "read_block"
    ## method where the supplied 'Nindex' is guaranteed to contain only
    ## NULLs, integer vectors, or RangeNSBS objects.
    ans <- extract_array(x, expand_Nindex_RangeNSBS(Nindex))

    set_dimnames(ans, ans_dimnames)
}


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### as.array(x) (in-memory realization of an array-like object)
###

### Realize the object i.e. execute all the delayed operations and turn the
### object back into an ordinary array.
.from_Array_to_array <- function(x, drop=FALSE)
{
    if (!isS4(x)) {
        ## The arrow package does not define any as.array method for
        ## arrow::Array objects (or their ancestors) at the moment, so this is
        ## a preventive hack only. See as.vector.Array below for the details.
        x_class <- class(x)
        if (length(x_class) >= 2L) {
            ## Call "next" S3 as.array method.
            class(x) <- tail(x_class, n=-1L)
            on.exit(class(x) <- x_class)
            return(base::as.array(x))
        }
    }
    if (!isTRUEorFALSE(drop))
        stop("'drop' must be TRUE or FALSE")
    index <- vector("list", length=length(dim(x)))
    ans <- extract_array(x, index)
    ans <- set_dimnames(ans, dimnames(x))
    if (drop)
        ans <- drop(ans)
    ans
}

### S3/S4 combo for as.array.Array
as.array.Array <- function(x, ...) .from_Array_to_array(x, ...)
setMethod("as.array", "Array", .from_Array_to_array)


### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Other coercions to in-memory representations
###
### All these coercions are based on as.array().
###

### S3/S4 combo for as.data.frame.Array
as.data.frame.Array <- function(x, row.names=NULL, optional=FALSE, ...)
{
    if (!isS4(x)) {
        ## The arrow package does not define any as.data.frame method for
        ## arrow::Array objects (or their ancestors) at the moment, so this is
        ## a preventive hack only. See as.vector.Array below for the details.
        x_class <- class(x)
        if (length(x_class) >= 2L) {
            ## Call "next" as.data.frame S3 method.
            class(x) <- tail(x_class, n=-1L)
            on.exit(class(x) <- x_class)
            return(base::as.data.frame(x, row.names=row.names,
                                          optional=optional, ...))
        }
    }
    as.data.frame(as.array(x, drop=TRUE),
                  row.names=row.names, optional=optional, ...)
}
setMethod("as.data.frame", "Array", as.data.frame.Array)

### S3/S4 combo for as.vector.Array
### Note that without the hack below this method breaks as.vector() on an
### Array object (R6 object) from the arrow package. See
### https://github.com/Bioconductor/DelayedArray/issues/114 for the details.
as.vector.Array <- function(x, mode="any")
{
    if (!isS4(x)) {
        ## Ugly hack to accomodate Array objects (R6 objects) from the arrow
        ## package. For these objects, class() returns the following:
        ##   > library(arrow)
        ##   > my_array <- Array$create(1:10)
        ##   > class(my_array)
        ##   [1] "Array"       "ArrowDatum"  "ArrowObject" "R6"
        ## Note that the arrow package does NOT define the as.vector.Arrow
        ## method. Instead it defines the as.vector.ArrowDatum method which
        ## is what we must call here. However, we don't call
        ## arrow:::as.vector.ArrowDatum explicitly to avoid introducing a
        ## dependency on the arrow package, and also to make the hack a little
        ## bit more generic.
        x_class <- class(x)
        if (length(x_class) >= 2L) {
            ## Call "next" as.vector S3 method (will be as.vector.ArrowDatum
            ## if 'x' is an arrow::Array object).
            class(x) <- tail(x_class, n=-1L)
            on.exit(class(x) <- x_class)
            return(base::as.vector(x, mode))
        }
    }
    ans <- as.array(x, drop=TRUE)
    as.vector(ans, mode=mode)
}
setMethod("as.vector", "Array", as.vector.Array)

### S3/S4 combo for as.logical.Array
as.logical.Array <- function(x, ...)
{
    if (!isS4(x)) {
        ## The arrow package does not define any as.logical method for
        ## arrow::Array objects (or their ancestors) at the moment, so this is
        ## a preventive hack only. See as.vector.Array above for the details.
        x_class <- class(x)
        if (length(x_class) >= 2L) {
            ## Call "next" as.logical S3 method.
            class(x) <- tail(x_class, n=-1L)
            on.exit(class(x) <- x_class)
            return(base::as.logical(x, ...))
        }
    }
    as.vector(x, mode="logical", ...)
}
setMethod("as.logical", "Array", as.logical.Array)

### S3/S4 combo for as.integer.Array
as.integer.Array <- function(x, ...)
{
    if (!isS4(x)) {
        ## Ugly hack to accomodate Array objects (R6 objects) from the arrow
        ## package. See as.vector.Array above for the details.
        x_class <- class(x)
        if (length(x_class) >= 2L) {
            ## Call "next" as.integer S3 method (will be
            ## arrow:::as.integer.ArrowDatum if 'x' is an arrow::Array object).
            class(x) <- tail(x_class, n=-1L)
            on.exit(class(x) <- x_class)
            return(base::as.integer(x, ...))
        }
    }
    as.vector(x, mode="integer", ...)
}
setMethod("as.integer", "Array", as.integer.Array)

### S3/S4 combo for as.numeric.Array
as.numeric.Array <- function(x, ...)
{
    if (!isS4(x)) {
        ## The arrow package does not define any as.numeric method for
        ## arrow::Array objects (or their ancestors) at the moment, so this is
        ## a preventive hack only. See as.vector.Array above for the details.
        x_class <- class(x)
        if (length(x_class) >= 2L) {
            ## Call "next" as.numeric S3 method.
            class(x) <- tail(x_class, n=-1L)
            on.exit(class(x) <- x_class)
            return(base::as.numeric(x, ...))
        }
    }
    as.vector(x, mode="numeric", ...)
}
setMethod("as.numeric", "Array", as.numeric.Array)

### S3/S4 combo for as.complex.Array
as.complex.Array <- function(x, ...)
{
    if (!isS4(x)) {
        ## The arrow package does not define any as.complex method for
        ## arrow::Array objects (or their ancestors) at the moment, so this is
        ## a preventive hack only. See as.vector.Array above for the details.
        x_class <- class(x)
        if (length(x_class) >= 2L) {
            ## Call "next" as.complex S3 method.
            class(x) <- tail(x_class, n=-1L)
            on.exit(class(x) <- x_class)
            return(base::as.complex(x, ...))
        }
    }
    as.vector(x, mode="complex", ...)
}
setMethod("as.complex", "Array", as.complex.Array)

### S3/S4 combo for as.character.Array
as.character.Array <- function(x, ...)
{
    if (!isS4(x)) {
        ## Ugly hack to accomodate Array objects (R6 objects) from the arrow
        ## package. See as.vector.Array above for the details.
        x_class <- class(x)
        if (length(x_class) >= 2L) {
            ## Call "next" as.character S3 method (will be
            ## as.character.ArrowDatum if 'x' is an arrow::Array object).
            class(x) <- tail(x_class, n=-1L)
            on.exit(class(x) <- x_class)
            return(base::as.character(x, ...))
        }
    }
    as.vector(x, mode="character", ...)
}
setMethod("as.character", "Array", as.character.Array)

### S3/S4 combo for as.raw.Array
as.raw.Array <- function(x)
{
    if (!isS4(x)) {
        ## The arrow package does not define any as.raw method for
        ## arrow::Array objects (or their ancestors) at the moment, so this is
        ## a preventive hack only. See as.vector.Array above for the details.
        x_class <- class(x)
        if (length(x_class) >= 2L) {
            ## Call "next" as.raw S3 method.
            class(x) <- tail(x_class, n=-1L)
            on.exit(class(x) <- x_class)
            return(base::as.raw(x))
        }
    }
    as.vector(x, mode="raw")
}
setMethod("as.raw", "Array", as.raw.Array)