1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
## ---- echo=FALSE, results="hide", message=FALSE-------------------------------
require(knitr)
opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE)
## ----setup, echo=FALSE, message=FALSE-----------------------------------------
library(scran)
library(BiocParallel)
register(SerialParam()) # avoid problems with fastMNN parallelization.
set.seed(100)
## -----------------------------------------------------------------------------
library(scRNAseq)
sce <- GrunPancreasData()
sce
## -----------------------------------------------------------------------------
library(scuttle)
qcstats <- perCellQCMetrics(sce)
qcfilter <- quickPerCellQC(qcstats, percent_subsets="altexps_ERCC_percent")
sce <- sce[,!qcfilter$discard]
summary(qcfilter$discard)
## -----------------------------------------------------------------------------
library(scran)
clusters <- quickCluster(sce)
sce <- computeSumFactors(sce, clusters=clusters)
summary(sizeFactors(sce))
## -----------------------------------------------------------------------------
sce2 <- computeSpikeFactors(sce, "ERCC")
summary(sizeFactors(sce2))
## -----------------------------------------------------------------------------
sce <- logNormCounts(sce)
## -----------------------------------------------------------------------------
dec <- modelGeneVar(sce)
plot(dec$mean, dec$total, xlab="Mean log-expression", ylab="Variance")
curve(metadata(dec)$trend(x), col="blue", add=TRUE)
## -----------------------------------------------------------------------------
dec2 <- modelGeneVarWithSpikes(sce, 'ERCC')
plot(dec2$mean, dec2$total, xlab="Mean log-expression", ylab="Variance")
points(metadata(dec2)$mean, metadata(dec2)$var, col="red")
curve(metadata(dec2)$trend(x), col="blue", add=TRUE)
## ---- fig.wide=TRUE, fig.asp=1.5----------------------------------------------
dec3 <- modelGeneVar(sce, block=sce$donor)
per.block <- dec3$per.block
par(mfrow=c(3, 2))
for (i in seq_along(per.block)) {
decX <- per.block[[i]]
plot(decX$mean, decX$total, xlab="Mean log-expression",
ylab="Variance", main=names(per.block)[i])
curve(metadata(decX)$trend(x), col="blue", add=TRUE)
}
## -----------------------------------------------------------------------------
# Get the top 10% of genes.
top.hvgs <- getTopHVGs(dec, prop=0.1)
# Get the top 2000 genes.
top.hvgs2 <- getTopHVGs(dec, n=2000)
# Get all genes with positive biological components.
top.hvgs3 <- getTopHVGs(dec, var.threshold=0)
# Get all genes with FDR below 5%.
top.hvgs4 <- getTopHVGs(dec, fdr.threshold=0.05)
## -----------------------------------------------------------------------------
# Running the PCA with the 10% of HVGs.
library(scater)
sce <- runPCA(sce, subset_row=top.hvgs)
reducedDimNames(sce)
## -----------------------------------------------------------------------------
sced <- denoisePCA(sce, dec2, subset.row=getTopHVGs(dec2, prop=0.1))
ncol(reducedDim(sced, "PCA"))
## -----------------------------------------------------------------------------
output <- getClusteredPCs(reducedDim(sce))
npcs <- metadata(output)$chosen
reducedDim(sce, "PCAsub") <- reducedDim(sce, "PCA")[,1:npcs,drop=FALSE]
npcs
## -----------------------------------------------------------------------------
# In this case, using the PCs that we chose from getClusteredPCs().
g <- buildSNNGraph(sce, use.dimred="PCAsub")
cluster <- igraph::cluster_walktrap(g)$membership
# Assigning to the 'colLabels' of the 'sce'.
colLabels(sce) <- factor(cluster)
table(colLabels(sce))
## -----------------------------------------------------------------------------
sce <- runTSNE(sce, dimred="PCAsub")
plotTSNE(sce, colour_by="label", text_by="label")
## -----------------------------------------------------------------------------
ratio <- clusterModularity(g, cluster, as.ratio=TRUE)
library(pheatmap)
pheatmap(log10(ratio+1), cluster_cols=FALSE, cluster_rows=FALSE,
col=rev(heat.colors(100)))
## -----------------------------------------------------------------------------
ass.prob <- bootstrapCluster(sce, FUN=function(x) {
g <- buildSNNGraph(x, use.dimred="PCAsub")
igraph::cluster_walktrap(g)$membership
}, clusters=sce$cluster)
pheatmap(ass.prob, cluster_cols=FALSE, cluster_rows=FALSE,
col=colorRampPalette(c("white", "blue"))(100))
## -----------------------------------------------------------------------------
subout <- quickSubCluster(sce, groups=colLabels(sce))
table(metadata(subout)$subcluster) # formatted as '<parent>.<subcluster>'
## -----------------------------------------------------------------------------
# Uses clustering information from 'colLabels(sce)' by default:
markers <- findMarkers(sce)
markers[[1]][,1:3]
## -----------------------------------------------------------------------------
wmarkers <- findMarkers(sce, test.type="wilcox", direction="up", lfc=1)
wmarkers[[1]][,1:3]
## -----------------------------------------------------------------------------
markers <- findMarkers(sce, pval.type="all")
markers[[1]][,1:2]
## -----------------------------------------------------------------------------
# Using the first 200 HVs, which are the most interesting anyway.
# Also turning down the number of iterations for speed.
of.interest <- top.hvgs[1:200]
cor.pairs <- correlatePairs(sce, subset.row=of.interest, iters=1e5)
cor.pairs
## -----------------------------------------------------------------------------
cor.pairs2 <- correlatePairs(sce, subset.row=of.interest,
block=sce$donor, iters=1e5)
## -----------------------------------------------------------------------------
cor.genes <- correlateGenes(cor.pairs)
cor.genes
## -----------------------------------------------------------------------------
y <- convertTo(sce, type="edgeR")
## -----------------------------------------------------------------------------
sessionInfo()
|