File: convertTo.Rd

package info (click to toggle)
r-bioc-scran 1.18.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,856 kB
  • sloc: cpp: 960; sh: 13; makefile: 2
file content (65 lines) | stat: -rw-r--r-- 2,251 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/convertTo.R
\name{convertTo}
\alias{convertTo}
\title{Convert to other classes}
\usage{
convertTo(
  x,
  type = c("edgeR", "DESeq2", "monocle"),
  ...,
  assay.type = 1,
  subset.row = NULL
)
}
\arguments{
\item{x}{A \linkS4class{SingleCellExperiment} object.}

\item{type}{A string specifying the analysis for which the object should be prepared.}

\item{...}{Other arguments to be passed to pipeline-specific constructors.}

\item{assay.type}{A string specifying which assay of \code{x} should be put in the returned object.}

\item{subset.row}{See \code{?"\link{scran-gene-selection}"}.}
}
\value{
For \code{type="edgeR"}, a DGEList object is returned containing the count matrix.
Size factors are converted to normalization factors.
Gene-specific \code{rowData} is stored in the \code{genes} element, and cell-specific \code{colData} is stored in the \code{samples} element.

For \code{type="DESeq2"}, a DESeqDataSet object is returned containing the count matrix and size factors.
Additional gene- and cell-specific data is stored in the \code{mcols} and \code{colData} respectively.

For \code{type="monocle"}, a CellDataSet object is returned containing the count matrix and size factors.
Additional gene- and cell-specific data is stored in the \code{featureData} and \code{phenoData} respectively.
}
\description{
Convert a \linkS4class{SingleCellExperiment} object into other classes for entry into other analysis pipelines.
}
\details{
This function converts an SingleCellExperiment object into various other classes in preparation for entry into other analysis pipelines, as specified by \code{type}.
}
\examples{
library(scuttle)
sce <- mockSCE()

# Adding some additional embellishments.
sizeFactors(sce) <- 2^rnorm(ncol(sce)) 
rowData(sce)$SYMBOL <- paste0("X", seq_len(nrow(sce)))
sce$other <- sample(LETTERS, ncol(sce), replace=TRUE)

# Converting to various objects.
convertTo(sce, type="edgeR")
convertTo(sce, type="DESeq2")
convertTo(sce, type="monocle")

}
\seealso{
\code{\link[edgeR]{DGEList}},
\code{\link[DESeq2:DESeqDataSet]{DESeqDataSetFromMatrix}},
\code{\link[monocle]{newCellDataSet}}, for specific class constructors.
}
\author{
Aaron Lun
}