File: control

package info (click to toggle)
r-bioc-scran 1.18.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,856 kB
  • sloc: cpp: 960; sh: 13; makefile: 2
file content (48 lines) | stat: -rw-r--r-- 1,772 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Source: r-bioc-scran
Maintainer: Debian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
Uploaders: Steffen Moeller <moeller@debian.org>
Section: gnu-r
Priority: optional
Build-Depends: debhelper-compat (= 13),
               dh-r,
               r-base-dev,
               r-bioc-singlecellexperiment,
               r-bioc-summarizedexperiment,
               r-bioc-s4vectors,
               r-bioc-biocgenerics,
               r-bioc-biocparallel,
               r-cran-rcpp,
               r-cran-matrix,
               r-bioc-edger,
               r-bioc-limma,
               r-bioc-biocneighbors,
               r-cran-igraph,
               r-cran-statmod,
               r-bioc-delayedarray,
               r-bioc-delayedmatrixstats,
               r-bioc-biocsingular,
               r-cran-dqrng,
               r-bioc-beachmat,
               r-cran-bh,
               libpcg-cpp-dev,
               r-bioc-scuttle,
               r-bioc-bluster
Standards-Version: 4.5.1
Vcs-Browser: https://salsa.debian.org/r-pkg-team/r-bioc-scran
Vcs-Git: https://salsa.debian.org/r-pkg-team/r-bioc-scran.git
Homepage: https://bioconductor.org/packages/scran/
Rules-Requires-Root: no

Package: r-bioc-scran
Architecture: any
Depends: ${R:Depends},
         ${shlibs:Depends},
         ${misc:Depends}
Recommends: ${R:Recommends}
Suggests: ${R:Suggests}
Description: BioConductor methods for single-cell RNA-Seq data analysis
 Implements functions for low-level analyses of single-cell RNA-seq data.
 Methods are provided for normalization of cell-specific biases,
 assignment of cell cycle phase, detection of highly variable and
 significantly correlated genes, identification of marker genes, and
 other common tasks in routine single-cell analysis workflows.