1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
#' Perform pairwise binomial tests
#'
#' Perform pairwise binomial tests between groups of cells,
#' possibly after blocking on uninteresting factors of variation.
#'
#' @param x A numeric matrix-like object of counts,
#' where each column corresponds to a cell and each row corresponds to a gene.
#' @param direction A string specifying the direction of effects to be considered for the alternative hypothesis.
#' @param lfc Numeric scalar specifying the minimum absolute log-ratio in the proportion of expressing genes between groups.
#' @param threshold Numeric scalar specifying the value below which a gene is presumed to be not expressed.
#' @inheritParams pairwiseTTests
#'
#' @details
#' This function performs exact binomial tests to identify marker genes between pairs of groups of cells.
#' Here, the null hypothesis is that the proportion of cells expressing a gene is the same between groups.
#' A list of tables is returned where each table contains the statistics for all genes for a comparison between each pair of groups.
#' This can be examined directly or used as input to \code{\link{combineMarkers}} for marker gene detection.
#'
#' Effect sizes for each comparison are reported as log2-fold changes in the proportion of expressing cells in one group over the proportion in another group.
#' We add a pseudo-count that squeezes the log-FCs towards zero to avoid undefined values when one proportion is zero.
#' This is closely related to but somewhat more interpretable than the log-odds ratio,
#' which would otherwise be the more natural statistic for a proportion-based test.
#'
#' If \code{restrict} is specified, comparisons are only performed between pairs of groups in \code{restrict}.
#' This can be used to focus on DEGs distinguishing between a subset of the groups (e.g., closely related cell subtypes).
#' Similarly, if any entries of \code{groups} are \code{NA}, the corresponding cells are are ignored.
#'
#' \code{x} can be a count matrix or any transformed counterpart where zeroes remain zero and non-zeroes remain non-zero.
#' This is true of any scaling normalization and monotonic transformation like the log-transform.
#' If the transformation breaks this rule, some adjustment of \code{threshold} is necessary.
#'
#' A consequence of the transformation-agnostic behaviour of this function is that it will not respond to normalization.
#' Differences in library size will not be considered by this function.
#' However, this is not necessarily problematic for marker gene detection -
#' users can treat this as \emph{retaining} information about the total RNA content, analogous to spike-in normalization.
#'
#' @section Direction and magnitude of the effect:
#' If \code{direction="any"}, two-sided binomial tests will be performed for each pairwise comparisons between groups of cells.
#' For other \code{direction}, one-sided tests in the specified direction will be used instead.
#' This can be used to focus on genes that are upregulated in each group of interest, which is often easier to interpret.
#'
#' In practice, the two-sided test is approximated by combining two one-sided tests using a Bonferroni correction.
#' This is done for various logistical purposes;
#' it is also the only way to combine p-values across blocks in a direction-aware manner.
#' As a result, the two-sided p-value reported here will not be the same as that from \code{\link{binom.test}}.
#' In practice, they are usually similar enough that this is not a major concern.
#'
#' To interpret the setting of \code{direction}, consider the DataFrame for group X, in which we are comparing to another group Y.
#' If \code{direction="up"}, genes will only be significant in this DataFrame if they are upregulated in group X compared to Y.
#' If \code{direction="down"}, genes will only be significant if they are downregulated in group X compared to Y.
#' See \code{?\link{binom.test}} for more details on the interpretation of one-sided Wilcoxon rank sum tests.
#'
#' The magnitude of the log-fold change in the proportion of expressing cells can also be tested by setting \code{lfc}.
#' By default, \code{lfc=0} meaning that we will reject the null upon detecting any difference in proportions.
#' If this is set to some other positive value, the null hypothesis will change depending on \code{direction}:
#' \itemize{
#' \item If \code{direction="any"}, the null hypothesis is that the true log-fold change in proportions lies within \code{[-lfc, lfc]}.
#' To be conservative, we perform one-sided tests against the boundaries of this interval, and combine them to obtain a two-sided p-value.
#' \item If \code{direction="up"}, the null hypothesis is that the true log-fold change is less than \code{lfc}.
#' A one-sided p-value is computed against the boundary of this interval.
#' \item If \code{direction="down"}, the null hypothesis is that the true log-fold change is greater than \code{-lfc}.
#' A one-sided p-value is computed against the boundary of this interval.
#' }
#'
#' @section Blocking on uninteresting factors:
#' If \code{block} is specified, binomial tests are performed between groups of cells within each level of \code{block}.
#' For each pair of groups, the p-values for each gene across
#' all levels of \code{block} are combined using Stouffer's weighted Z-score method.
#'
#' The weight for the p-value in a particular level of \code{block} is defined as \eqn{N_x + N_y},
#' where \eqn{N_x} and \eqn{N_y} are the number of cells in groups X and Y, respectively, for that level.
#' This means that p-values from blocks with more cells will have a greater contribution to the combined p-value for each gene.
#'
#' When combining across batches, one-sided p-values in the same direction are combined first.
#' Then, if \code{direction="any"}, the two combined p-values from both directions are combined.
#' This ensures that a gene only receives a low overall p-value if it changes in the same direction across batches.
#'
#' When comparing two groups, blocking levels are ignored if no p-value was reported, e.g., if there were insufficient cells for a group in a particular level.
#' If all levels are ignored in this manner, the entire comparison will only contain \code{NA} p-values and a warning will be emitted.
#'
#' @return
#' A list is returned containing \code{statistics} and \code{pairs}.
#'
#' The \code{statistics} element is itself a list of \linkS4class{DataFrame}s.
#' Each DataFrame contains the statistics for a comparison between a pair of groups,
#' including the overlap proportions, p-values and false discovery rates.
#'
#' The \code{pairs} element is a DataFrame with one row corresponding to each entry of \code{statistics}.
#' This contains the fields \code{first} and \code{second},
#' specifying the two groups under comparison in the corresponding DataFrame in \code{statistics}.
#'
#' In each DataFrame in \code{statistics}, the log-fold change represents the log-ratio of the proportion of expressing cells in the \code{first} group compared to the expressing proportion in the \code{second} group.
#'
#' @author
#' Aaron Lun
#'
#' @references
#' Whitlock MC (2005).
#' Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach.
#' \emph{J. Evol. Biol.} 18, 5:1368-73.
#'
#' @examples
#' library(scuttle)
#' sce <- mockSCE()
#' sce <- logNormCounts(sce)
#'
#' # Any clustering method is okay.
#' kout <- kmeans(t(logcounts(sce)), centers=2)
#'
#' # Vanilla application:
#' out <- pairwiseBinom(logcounts(sce), groups=kout$cluster)
#' out
#'
#' # Directional and with a minimum log-fold change:
#' out <- pairwiseBinom(logcounts(sce), groups=kout$cluster,
#' direction="up", lfc=1)
#' out
#'
#' @seealso
#' \code{\link{binom.test}} and \code{\link{binomTest}}, on which this function is based.
#'
#' \code{\link{combineMarkers}}, to combine pairwise comparisons into a single DataFrame per group.
#'
#' \code{\link{getTopMarkers}}, to obtain the top markers from each pairwise comparison.
#' @export
#' @name pairwiseBinom
NULL
#' @importFrom S4Vectors DataFrame
#' @importFrom BiocParallel SerialParam
#' @importFrom scuttle .subset2index
.pairwiseBinom <- function(x, groups, block=NULL, restrict=NULL, exclude=NULL, direction=c("any", "up", "down"),
threshold=1e-8, lfc=0, log.p=FALSE, gene.names=NULL,
subset.row=NULL, BPPARAM=SerialParam())
{
groups <- .setup_groups(groups, x, restrict=restrict, exclude=exclude)
direction <- match.arg(direction)
# Actual calculations occur inside another function, for symmetry with pairwiseTTests.
.blocked_binom(x, subset.row, groups, block=block, direction=direction,
gene.names=gene.names, log.p=log.p, threshold=threshold, lfc=lfc, BPPARAM=BPPARAM)
}
#' @export
#' @rdname pairwiseBinom
setGeneric("pairwiseBinom", function(x, ...) standardGeneric("pairwiseBinom"))
#' @export
#' @rdname pairwiseBinom
setMethod("pairwiseBinom", "ANY", .pairwiseBinom)
#' @export
#' @rdname pairwiseBinom
#' @importFrom SummarizedExperiment assay
setMethod("pairwiseBinom", "SummarizedExperiment", function(x, ..., assay.type="logcounts") {
.pairwiseBinom(assay(x, i=assay.type), ...)
})
#' @export
#' @rdname pairwiseBinom
#' @importFrom SingleCellExperiment colLabels
setMethod("pairwiseBinom", "SingleCellExperiment", function(x, groups=colLabels(x, onAbsence="error"), ...) {
callNextMethod(x=x, groups=groups, ...)
})
###########################################################
# Internal functions (blocking)
###########################################################
#' @importFrom S4Vectors DataFrame
#' @importFrom BiocParallel SerialParam bpstart bpstop
#' @importFrom stats pbinom
#' @importFrom scuttle .bpNotSharedOrUp numDetectedAcrossCells
#' @importFrom SummarizedExperiment assay
.blocked_binom <- function(x, subset.row, groups, block=NULL, direction="any", gene.names=NULL, log.p=TRUE,
threshold=1e-8, lfc=0, BPPARAM=SerialParam())
# This looks at every level of the blocking factor and performs
# binomial tests between pairs of groups within each blocking level.
{
if (is.null(block)) {
block <- list(`1`=seq_len(ncol(x)))
} else {
if (length(block)!=ncol(x)) {
stop("length of 'block' does not equal 'ncol(x)'")
}
block <- split(seq_along(block), block)
}
if (.bpNotSharedOrUp(BPPARAM)) {
bpstart(BPPARAM)
on.exit(bpstop(BPPARAM))
}
# Computing across blocks.
group.vals <- levels(groups)
nblocks <- length(block)
all.nzero <- all.n <- vector("list", nblocks)
for (b in seq_along(block)) {
chosen <- block[[b]]
cur.groups <- groups[chosen]
all.n[[b]] <- as.vector(table(cur.groups))
names(all.n[[b]]) <- group.vals
raw.nzero <- numDetectedAcrossCells(x[,chosen,drop=FALSE], subset.row=subset.row,
ids=cur.groups, detection_limit=threshold, BPPARAM=BPPARAM)
raw.nzero <- assay(raw.nzero)
if (any(!group.vals %in% colnames(raw.nzero))) {
# Handle missing levels gracefully.
tmp <- matrix(0L, nrow=nrow(raw.nzero), ncol=length(group.vals),
dimnames=list(rownames(raw.nzero), group.vals))
tmp[,colnames(raw.nzero)] <- raw.nzero
raw.nzero <- tmp
}
all.nzero[[b]] <- raw.nzero
}
if (lfc==0) {
STATFUN <- .generate_nolfc_binom(all.n, all.nzero)
} else {
STATFUN <- .generate_lfc_binom(all.n, all.nzero, direction, lfc)
}
gene.names <- .setup_gene_names(gene.names, x, subset.row)
.pairwise_blocked_template(group.vals, nblocks=length(block), direction=direction,
gene.names=gene.names, log.p=log.p, STATFUN=STATFUN, effect.name="logFC",
BPPARAM=BPPARAM)
}
##########################
### Internal functions ###
##########################
#' @importFrom stats pbinom
.generate_nolfc_binom <- function(all.n, all.nzero) {
force(all.n)
force(all.nzero)
function(b, host, target) {
host.nzero <- all.nzero[[b]][,host]
target.nzero <- all.nzero[[b]][,target]
host.n <- all.n[[b]][[host]]
target.n <- all.n[[b]][[target]]
p <- host.n/(host.n + target.n)
size <- host.nzero + target.nzero
effect <- .compute_binom_effect(host.nzero, host.n, target.nzero, target.n)
# Not exactly equal to binom.test(); the two-sided p-value from binom.test()
# cannot be performed by any combination of the one-sided p-values. This
# makes it impossible to behave with directional Stouffer's method in
# .pairwise_blocking_template(), and just generally gums up the works.
list(
forward=effect,
reverse=-effect,
weight=as.double(host.n) + as.double(target.n),
valid=host.n > 0L && target.n > 0L,
left=pbinom(host.nzero, size, p, log.p=TRUE),
right=pbinom(host.nzero - 1, size, p, lower.tail=FALSE, log.p=TRUE)
)
}
}
# Log-fold change in proportions, mimic edgeR::cpm().
.compute_binom_effect <- function(host.nzero, host.n, target.nzero, target.n) {
mean.lib <- mean(c(host.n, target.n))
pseudo.host <- 1 * host.n/mean.lib
pseudo.target <- 1 * target.n/mean.lib
unname(log2((host.nzero + pseudo.host)/(host.n + 2 * pseudo.host))
- log2((target.nzero + pseudo.target)/(target.n + 2 * pseudo.target)))
}
#' @importFrom stats pbinom
.generate_lfc_binom <- function(all.n, all.nzero, direction, lfc) {
force(all.n)
force(all.nzero)
force(direction)
fold <- 2^lfc
function(b, host, target) {
host.nzero <- all.nzero[[b]][,host]
target.nzero <- all.nzero[[b]][,target]
host.n <- all.n[[b]][[host]]
target.n <- all.n[[b]][[target]]
# Converting log-fold change in the **proportions** into **probabilities**.
# Let p_1 and p_2 be the probability of non-zero in group 1 and 2 respectively.
# Let's say that p_1 = fold * p_2 for some fold > 1.
# Given a non-zero value, the probability that it comes from group 1 is
# (p_1 * n_1) / (p_1 * n_1 + p_2 * n_2), which collapses to `p.right`
# (i.e., probability of more non-zeros, hence the right side of the distribution).
# Calculation of `p.left` follows the opposite premise that p_1 = p_2 / fold,
# i.e., the other side of the composite null hypothesis.
p.left <- host.n/fold / (target.n + host.n/fold)
p.right <- host.n*fold / (target.n + host.n*fold)
size <- host.nzero + target.nzero
effect <- .compute_binom_effect(host.nzero, host.n, target.nzero, target.n)
output <- list(
forward=effect,
reverse=-effect,
weight=as.double(host.n) + as.double(target.n),
valid=host.n > 0L && target.n > 0L
)
output$left <- pbinom(host.nzero, size, p.left, log.p=TRUE)
output$right <- pbinom(host.nzero - 1, size, p.right, lower.tail=FALSE, log.p=TRUE)
output
}
}
|